Главная страница
Навигация по странице:

  • Наиболее распространенные разновидности технологий Ethernet

  • Прикладной уровень (Application layer).

  • Уровень представления (Presentation layer).

  • Сеансовый уровень (Session layer).

  • Транспортный уровень (Transport layer).

  • Сетевой уровень (Network layer).

  • Канальный уровень (Data Link layer).

  • Физический уровень (Physical layer).

  • Протоколы локальных сетей Протоколы локальных сетей

  • Свойства протоколов локальной сети

  • Понятие протокола Интернет

  • Экзамен сети. Блок 1 1 вопрос. История развития ЭВМ


    Скачать 1.08 Mb.
    НазваниеБлок 1 1 вопрос. История развития ЭВМ
    АнкорЭкзамен сети.docx
    Дата02.10.2018
    Размер1.08 Mb.
    Формат файлаdocx
    Имя файлаЭкзамен сети.docx
    ТипДокументы
    #25374
    страница6 из 11
    1   2   3   4   5   6   7   8   9   10   11

    Зачем нужен маршрутизатор?


    Обычно для создания простой локальной сети (компьютерной сети) построенной на технологии Ethernet или Wi-Fi используется сетевое устройство (маршрутизатор, модем, коммутатор, точка беспроводного доступа...). Но из всего этого многообразия сетевых устройств нас интересует маршрутизатор. Так зачем нужен маршрутизатор и какую роль он выполняет в локальной сети?

    Маршрутизатор (router) - это сетевой компьютер связывающий участки локальной сети, который обрабатывает полученные данные по заданным правилам администратора и опираясь на таблицу маршрутизации определяет путь для пересылки данных.

    Чтобы было более понятно, давайте разберем участие маршрутизатора в домашней локальной сети. Предположим, что у вас дома есть настольный компьютер (desktop), ноутбук (laptop), принтер или МФУ (Многофункциональное устройство), планшет и в добавок вы хотите купить телевизор Smart с 3D. К вам в квартиру заходит всего лишь одинкабель LAN по которому провайдер предоставляет вам доступ к сети интернет. Возникает вопрос: "Как одновременно всем устройствам дать выход в сеть интернет, если кабель от провайдера в квартире один?".

    назначение маршрутизатора (router) в домашней сети

    Вот тут-то и приходит на помощь беспроводной маршрутизатор, который можно подключить к кабелю провайдера (верхнее изображение) и дать всем устройствам (Smart TV, компьютер, планшет...) выход в сеть интернет. Если провайдер использует телефонные линии, то подключение маршрутизатора к сети интернет выполняется через модем (нижнее изображение). Связь домашних устройств с беспроводным маршрутизатором осуществляется по кабелю LAN (опрессовка витой пары без инструмента) и по беспроводной сети Wi-Fi (примеры слабого сигнала Wi-Fi).

    Принцип работы маршрутизатора.


    Таким образом маршрутизатор связывает разнородные сегменты сети (локальную домашнюю сеть и глобальную сеть интернет) и на основе таблицы маршрутизации отправляет данные адресату.

    Таблица маршрутизации - это электронная база данных в маршрутизаторе, которая представляет из себя некий набор правил. В ней содержится информация о сетевых маршрутах по которой определяется наилучший путь для передачи пакета данных.

    Таблица содержит в себе адрес и маску сети назначения, адрес шлюза (маршрутизатор в сети на который отправляются данные), метрику (расстояние) и интерфейс (имя или идентификатор устройства).

    электронная база данных в маршрутизаторе (router)

    Следует сказать, что маршрутизатор в отличии от коммутатора не умеет составлять таблицу на основе информации из полученных пакетов. Она храниться в его памяти и может создаваться динамически или статически.

    Через специальные протоколы маршрутизатор время от времени по каждому адресу отправляет тестовую информацию и на полученных данных поддерживает фактическую карту сети. Другими словами маршрутизаторы периодически сканируют сеть и обмениваются информацией друг о друге и сети к которой они подключены. Этот процесс называется динамической маршрутизацией.

    Статическая маршрутизация подразумевает создание таблицы администратором вручную. В этом случае вся маршрутизация выполняется без участия специальных протоколов.

    В отличии от коммутатора (Switch/уровень 2 в OSI/"Канальный") и концентратора (Hub/уровень 1 в OSI/"Физический") маршрутизатор стоит на голову выше, так как работает на третьем уровне в модели OSI (базовая эталонная модель), который называется "Сетевым".


    Наиболее распространенные разновидности технологий Ethernet

    Обзор современных локальных сетей Ethernet

    Ethernet (эзернет, от лат. aether — эфир) — пакетная технология компьютерных сетей.

    Ethernet наиболее популярное во всем мире семейство стандартов для локальных сетей, которое охватывает физический и канальный уровень модели OSI. Стандарты Ethernet отличаются поддерживаемой скоростью; широко распространены на сегодняшний день скорости 10, 100 и 1000 Мбит/с (т.е. 1 Гбит/с). Различные варианты технологии также отличаются типом используемой среды передачи данных, например, в наиболее популярных стандартах Ethernet используется недорогой тип кабеля, а именно неэкрани рованная витая пара (Unshielded Twisted Pair UTP), в то время как в других более дорогой оптоволоконный кабель. Использование оптоволоконного кабеля оправдано в том случае, если нужно подключить устройства, которые находятся на большом рас стоянии друг от друга, или в случае повышенных требований к безопасности сети. Для обеспечения различных потребностей при создании локальных сетей и были разработаны различные стандарты, работающие на разных скоростях, разном типе среды передачи данных (чем больше расстояние, тем дороже технология) и т.п. Институт инженеров по электротехнике и электронике (IEEE) опубликовал множество стандартов Ethernet, после того, как в начале 1980х он возглавил процесс стандартизации локальных сетей. Большинство стандартов поразному реализовано на физическом уровне, работает с различными скоростями и типами кабелей.

    В стандартах IEEE канальный уровень разделен на два подуровня:

    •  IEEE 802.3 подуровень контроля доступа к среде передачи данных

    (подуровень MAC);

    •  IEEE 802.2  подуровень управления логическим каналом (подуровень LLC).

    Фактически MAC-адрес получил свое название от названия нижнего подуровня канального уровня Ethernet. Каждый новый стандарт физического уровня, публикуемый IEEE, содержит дос таточно много отличий от предшествующих, но при этом использует тот же заголовок формата 802.3 и подуровень LLC в качестве верхнего уровня.

    В табл. 3.2 перечислены наиболее часто используемые стандарты Ethernet IEEE

    для физического уровня.

    Таблица 3.2. Наиболее распространенные разновидности технологии Ethernet

    Общеизвестно

    е название

    Скорость

    (Мбит/с)

    Альтернативное

    название

    Стандарт

    IEEE

    Тип кабеля, максимальная длина (м)

    Ethernet

    10

    10BASE-T

    IEEE 802.3

    Медный, 100

    Fast Ethernet

    100

    100BASE-TX

    IEEE 802.3u

    Медный, 100

    Gigabit Ethernet

    1000

    1000BASE-LX,

    1000BASE-SX

    IEEE 802.3z

    Оптический, 550 для SX, 5000 для LX

    Gigabit Ethernet

    1000

    1000BASE-T

    IEEE 802.3ab

    Медный, 100




    Уровни протоколов

    Наиболее распространённой системой классификации сетевых протоколов является так называемая модель OSI. В соответствии с ней протоколы делятся на 7 уровней по своему назначению - от физического (формирование и распознавание электрических или других сигналов) до прикладного (API для передачи информации приложениями):

    • Прикладной уровень (Application layer). Верхний (7-й) уровень модели, обеспечивает взаимодействие сети и пользователя. Уровень разрешает приложениям пользователя доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты. Также отвечает за передачу служебной информации, предоставляет приложениям информацию об ошибках и формирует запросы к уровню представления. Пример: HTTP, POP3, SMTP.

    • Уровень представления (Presentation layer). 6-й уровень отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с уровня приложений, он преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям. На уровне представления может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

    • Сеансовый уровень (Session layer). 5-й уровень модели отвечает за поддержание сеанса связи, что позволяет приложениям взаимодействовать между собой длительное время. Сеансовый уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений. Синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при нарушении взаимодействия.

    • Транспортный уровень (Transport layer). 4-й уровень модели, предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом неважно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Блоки данных он разделяет на фрагменты, размер которых зависит от протокола, короткие объединяет в один, а длинные разбивает. Протоколы этого уровня предназначены для взаимодействия типа точка-точка. Пример: TCP, UDP

    • Сетевой уровень (Network layer). 3-й уровень сетевой модели OSI, предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор.

    • Канальный уровень (Data Link layer). Этот уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Данные, полученные с физического уровня, он упаковывает во фреймы, проверяет на целостность, если нужно исправляет ошибки и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием. Спецификация IEEE 802 разделяет этот уровень на 2 подуровня - MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня. На этом уровне работают коммутаторы, мосты. В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI, NDIS

    • Физический уровень (Physical layer). Самый нижний уровень модели, предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и соответственно их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов. Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством. На этом уровне работают концентраторы (хабы), повторители (ретрансляторы) сигнала и медиаконверторы. Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

    В основном используются протокол TCP/IP

    Определение:

    Transmission Control Protocol/Internet Protocol, TCP/IP (Протокол управления передачей/Протокол Интернета)

    Большинство операционных систем сетевых серверов и рабочих станций поддерживает TCP/IP, в том числе серверы NetWare, все системы Windows, UNIX, последние версии Mac OS, системы OpenMVS и z/OS компании IBM, а также OpenVMS компании DEC. Кроме того, производители сетевого оборудования создают собственное системное программное обеспечение для TCP/IP, включая средства повышения производительности устройств. Стек TCP/IP изначально применялся на UNIX-системах, а затем быстро распространился на многие другие типы сетей.

    Протоколы локальных сетей

    Протоколы локальных сетей

    • IPX/SPX;

    • NetBEUI;

    • AppleTalk;

    • TCP/IP;

    • SNA;

    • DLC;

    • DNA;

    Свойства протоколов локальной сети

    В основном протоколы локальных сетей имеют такие же свойства, как и Другие коммуникационные протоколы, однако некоторые из них были разработаны давно, при создании первых сетей, которые работали медленно, были ненадежными и более подверженными электромагнитным и радиопомехам. Поэтому для современных коммуникаций некоторые протоколы не вполне пригодны. К недостаткам таких протоколов относится слабая защита от ошибок или избыточный сетевой трафик. Кроме того, определенные протоколы были созданы для небольших локальных сетей и задолго до появления современных корпоративных сетей с развитыми средствами маршрутизации.

    Протоколы локальных сетей должны иметь следующие основные характеристики:

    • обеспечивать надежность сетевых каналов;

    • обладать высоким быстродействием;

    • обрабатывать исходные и целевые адреса узлов;

    • соответствовать  сетевым  стандартам, в особенности - стандарту IEEE 802.

    В основном все протоколы, рассматриваемые в этой главе, соответствуют перечисленным требованиям, однако, как вы узнаете позднее, у одних протоколов возможностей больше, чем у других.

    В таблице перечислены протоколы локальных сетей и операционные системы, с которыми эти протоколы могут работать. Далее в главе указаны протоколы и системы (в частности, операционные системы серверов и хост компьютеров) будут описаны подробнее.

    Таблица Протоколы локальных сетей и сетевые операционные системы

    Протокол

    Соответствующая операционная система

    IPX/SPX

    Novell NetWare

    NetBEUI

    Первые версии операционных систем Microsoft Windows

    AppleTalk

    Apple Macintosh

    TCP/IP

    UNIX, Novel NetWare, современные версии операционных систем Microsoft Windows, операционные системы мэйнфреймов IBM

    SNA

    Операционные системы мэйнфреймов и миникомпьютеров IBM

    DLC

    Клиентские системы, взаимодействующие с мэйнфреймами IBM, настроенными на работу с протоколом SNA

    Понятие протокола Интернет

    Очевидно, что рано или поздно компьютеры, расположенные в разных точках земного шара, по мере увеличения своего количества должны были обрести некие средства общения. Такими средствами стали компьютерные сети. Сети бывают локальными и глобальными. Локальная сеть - это сеть, объединяющая компьютеры, географически расположенные на небольшом расстоянии друг от друга - например, в одном здании. Глобальные сети служат для соединения сетей и компьютеров, которых разделяют большие расстояния - в сотни и тысячи километров. Интернет относится к классу глобальных сетей.

    Простое подключение одного компьютера к другому - шаг, необходимый для создания сети, но не достаточный. Чтобы начать передавать информацию, нужно убедиться, что компьютеры "понимают" друг друга. Как же компьютеры "общаются" по сети? Чтобы обеспечить эту возможность, были разработаны специальные средства, получившие название "протоколы". Протокол - это совокупность правил, в соответствии с которыми происходит передача информации через сеть. Понятие протокола применимо не только к компьютерной индустрии. Даже те, кто никогда не имел дела с Интернетом, скорее всего работали в повседневной жизни с какими-либо устройствами, функционирование которых основано на использовании протоколов. Так, обычная телефонная сеть общего пользования тоже имеет свой протокол, который позволяет аппаратам, например, устанавливать факт снятия трубки на другом конце линии или распознавать сигнал о разъединении и даже номер звонящего.

    Исходя из этой естественной необходимости, миру компьютеров потребовался единый язык (то есть протокол), который был бы понятен каждому из них.

    Основные протоколы используемые в работе Интернет:


    написать администратору сайта