Главная страница
Навигация по странице:

  • Вопросы, знание которых обязательно для допуска к

  • Часть 1. Метод амперметра и вольтметра Применение этого метода основано на использовании закона Ома: R

  • Условие равновесия моста

  • – φ c

  • Порядок выполнения работы Каждая команда делает задания со своим резистором: 1 вариант Резистор 1 2 вариант Резистор 2 3 вариант Резистор 3

  • Резистор 4 5 вариант Резистор 5 Задание 1. Определение сопротивления резисторов методом амперметра и вольтметра.

  • Задание 2. Измерение сопротивления резистора с помощью моста Уитстона.

  • Методы экспериментального определения сопротивлений. Цель работы изучить два способа измерения сопротивлений методом амперметра и вольтметра, компенсационным методом. Принадлежности


    Скачать 281.08 Kb.
    НазваниеЦель работы изучить два способа измерения сопротивлений методом амперметра и вольтметра, компенсационным методом. Принадлежности
    Дата05.12.2021
    Размер281.08 Kb.
    Формат файлаpdf
    Имя файлаМетоды экспериментального определения сопротивлений.pdf
    ТипДокументы
    #291848

    МЕТОДЫ ЭКСПЕРИМЕНТАЛЬНОГО
    ОПРЕДЕЛЕНИЯ СОПРОТИВЛЕНИЙ
    Цель работы: изучить два способа измерения сопротивлений: методом амперметра и вольтметра, компенсационным методом.
    Принадлежности: измеряемые резисторы, источник тока, вольтметр, амперметр, ключ, реостат, магазины сопротивлений, реохорд, гальванометр, мост постоянного тока.
    Вопросы, знание которых обязательно для допуска к
    выполнению работы
    1.
    Что такое сопротивление?
    Какие способы измерения сопротивлений Вы знаете?
    2.
    Что измеряет амперметр? Какие требования предъявляют к амперметрам. Каковы правила включения их в цепь?
    3.
    Что измеряет вольтметр? Какие требования предъявляют к вольтметрам? Каковы правила включения их в цепь?
    4.
    Что называется классом точности электроизмерительного прибора?
    5.
    Поясните принцип действия моста Уитстона.
    6.
    Расскажите порядок выполнения работы.
    Введение
    Сопротивлением (R) называют физическую величину, характеризующую противодействие протеканию тока в электрической цепи. Очень часто сопротивлением называют и элемент цепи, осуществляющий это противодействие. Для этого элемента применяется термин резистор. Величину сопротивления резистора или всей цепи необходимо знать (измерить) для того, чтобы правильно рассчитать, например, ток в цепи. Сопротивление резистора зависит от материала проводника и его размеров R = 𝝆·l / S. На величину сопротивления резистора влияют и различные внешние факторы: температура, освещенность, магнитное поле, давление, приложенное напряжение и др.
    Специальные устройства, обладающие сильно выраженной зависимостью сопротивления от указанных выше факторов, называются, соответственно, терморезисторами (или коротко – термисторами), фоторезисторами, магниторезисторами, тензорезисторами, варисторами и т.д. Таким образом, по изменению сопротивления резистора можно судить о таких сугубо неэлектрических величинах, как температура, давление и др.
    Существует несколько способов измерения сопротивлений.
    1.
    Метод амперметра и вольтметра.
    Это наиболее простой по применяемым приборам и потому широко
    используемый на практике метод.
    2.
    Мостовые методы, обеспечивающие очень высокую точность измерения (мосты Уитстона, Кольрауша, Томсона и др.).
    Перечисленные выше методы широко применяются для измерения сопротивлений в диапазоне от 1 Ом до, примерно, 10 9
    Ом. При измерениях сопротивлений меньших 1 Ом необходимо исключить переходные сопротивления контактов и сопротивления соединительных проводов. Это осуществляется в методе компенсации и в методе двойного моста. При измерениях очень больших сопротивлений (до 10 15
    Ом) применяется метод разрядки конденсатора через измеряемое сопротивление.
    Часть 1. Метод амперметра и вольтметра
    Применение этого метода основано на использовании закона Ома:
    R = U / I
    (1)
    Для расчета неизвестного сопротивления резистора R
    Х
    необходимо
    одновременно измерить ток I через этот резистор и напряжение U на его концах.
    Часть 2. Компенсационные методы измерения сопротивления
    Мост Уитстона (мост постоянного тока)
    Компенсационный способ измерения сопротивлений является наиболее точным. Принципиальная схема метода (мост Уитстона) дана на рис. 1.
    Мостовая схема представляет собой замкнутый четырехугольник abcd, составленный из сопротивлений R
    1
    , R
    2
    , R
    3
    , R
    4
    , называемых плечами моста.
    Противоположные вершины ас и bd соединены диагоналями моста. В одну диагональ включен источник тока E, в другую – нулевой гальванометр
    Г. При некотором соотношении между сопротивлениями плеч ток, протекающий через гальванометр, обращается в ноль (i
    g
    = 0). В этом случае говорят, что мост уравновешен.
    Условие равновесия моста. Обозначим токи в плечах соответственно через i
    1
    , i
    2
    , i
    3
    , i
    4
    . Так как i
    g
    = 0, то, во-первых, i
    1
    = i
    2
    , а i
    3
    = i
    4
    и, во-вторых, φ
    b
    =
    φ
    d
    . По закону Ома разности потенциалов для плеч равны:
    φ
    a
    φ
    b
    = i
    1
    R
    1
    ;
    φ
    b
    φ
    c
    = i
    2
    R
    2
    = i
    1
    R
    2
    ;
    φ
    a
    φ
    d
    = i
    3
    R
    3
    ;
    φ
    d
    φ
    c
    = i
    4
    R
    4
    = i
    3
    R
    4
    .
    Так как φ
    b
    = φ
    d
    , то i
    1
    R
    1
    = i
    3
    R
    3
    и i
    1
    R
    2
    = i
    3
    R
    4
    , откуда
    R
    1
    / R
    2
    = R
    3
    / R
    4
    (2)
    Это и есть условие равновесия моста. Его используют для расчета одного из 4-х сопротивлений. Пусть вместо R
    1
    в цепь включен резистор с неизвестным сопротивлением R
    X
    . При трех остальных известных сопротивлениях
    R
    Х
    = R
    2
    ·R
    3
    / R
    4
    (3)

    Таким образом, измерение неизвестного сопротивления сводится к уравновешиванию моста с тремя известными и одним неизвестным сопротивлением и расчета последнего по формуле (3).
    Уравновесить мост, т.е. добиться отсутствия тока через гальванометр, можно двумя способами. Во-первых, установив постоянное отношение R
    3
    / R
    4
    ,
    подбирать соответствующее сопротивление R
    2
    и, во-вторых, установив постоянное сопротивление R
    2
    , изменять отношение плеч R
    3
    / R
    4
    Рис. 1.
    Рис. 2.
    Первый способ используется в декадных мостах. Второй способ реализуется в линейных мостах (рис. 2). Здесь R
    Х
    неизвестное сопротивление,
    R
    2
    – магазин сопротивлений. Сопротивления R
    3
    и R
    4
    заменены отрезками l
    3
    и
    l
    4
    калиброванной проволоки (реохорда). Перемещая движок D вдоль реохорда, можно плавно изменять отношения плеч R
    3
    / R
    4
    . Так как сопротивление проволоки пропорционально длине, то отношение сопротивлений R
    3
    / R
    4
    можно заменить отношением соответствующих отрезков реохорда l
    3
    /l
    4
    . Таким образом, измерение неизвестного сопротивления сводится к следующему:
    1.
    Замыкая на короткое время кнопку К и перемещая движок D вдоль реохорда, следует добиться равновесия моста (при замкнутом ключе К ток через гальванометр не течет i
    g
    = 0).
    2.
    Определить по линейке реохорда длины отрезков l
    3
    и l
    4
    = l l
    3
    ,
    где l – длина всего реохорда.
    3.
    Рассчитать неизвестное сопротивление по формуле:
    R
    Х
    = R
    2
    ·l
    3
    / l
    4
    .
    (4)
    Для повышения точности измерений следует стремиться к тому, чтобы мост был уравновешен при отношении плеч l
    3
    /l
    4
    близком к 1, т.е. чтобы движок
    D находился примерно в средней трети длины реохорда. Для этого
    R
    1
    i
    1
    R
    2
    i
    g
    i
    2
    i
    4
    R
    3
    R
    4
    i
    3
    d
    E
    R
    X
    R
    2
    R
    3
    l
    3
    K
    R
    4
    l
    4
    сопротивление R
    2
    должно быть приблизительно равно R
    Х
    . Если сопротивление
    R
    Х
    неизвестно даже приблизительно, то, выбрав R
    2
    произвольно, уравновешивают мост и рассчитывают R
    Х
    сначала приближенно, а затем, установив на магазине сопротивлений R
    2
    = R
    Х
    , повторяют измерения и рассчитывают R
    Х
    более точно.
    Поскольку сопротивление реохорда мало, мост Уитстона описанного типа применяется, как правило, для измерения небольших сопротивлений (от
    1 до 1000 Ом).
    Порядок выполнения работы
    Каждая команда делает задания со своим резистором:
    1 вариант
    Резистор 1
    2 вариант
    Резистор 2
    3 вариант
    Резистор 3
    4 вариант
    Резистор 4
    5 вариант
    Резистор 5
    Задание 1. Определение сопротивления резисторов методом
    амперметра и вольтметра.
    Ссылка на работу
    1.
    Начертите схему собранной цепи.
    2.
    Измерьте силу тока в цепи падение напряжения на резисторе.
    3.
    С помощью реостата измените сопротивление в цепи и снова измерьте силу тока и напряжение на исследуемом проводнике.
    4.
    Результаты измерений запишите в таблицу.
    № опыта
    Сила тока
    I, A
    Напряжение
    U, B
    Сопротивление
    R, Oм
    Среднее сопротивление
    R
    ср
    , Oм
    1 2
    3 4
    5 5.
    Используя закон Ома, вычислите сопротивление резистора по данным каждого опыта. Результаты вычислений занесите в таблицу.
    Вычислите среднее сопротивление резистора.
    6.
    По данным измерений постройте график зависимости силы тока в проводнике от напряжения на его концах.

    Задание 2. Измерение сопротивления резистора с помощью моста
    Уитстона.
    Ссылка на работу
    1.
    Ознакомиться с теорией
    2.
    Поставить движок реохорда в среднее положение.
    3.
    Сбалансировать мост подбором сопротивлений магазина R
    m
    , так чтобы показания гальванометра оказались равными нулю. Значения R
    m
    , L
    1
    , L
    2 записать в таблицу.
    4.
    Найти неизвестное сопротивление по формуле:
    2 1
    L
    L
    R
    R
    m
    x
    =
    ,
    Результат занести в таблицу
    5.
    Повторить измерения указанные в п. 3, 4 еще два раза, сместив движок реоxорда вправо и влево от среднего положения.
    6.
    Вычислить среднее значение измеренного резистора.

    R
    m
    ,
    Ом
    L
    1
    , м
    L
    2
    , м
    R
    x
    ,
    Ом
    𝑅
    𝑥
    ̅̅̅̅,
    Ом
    1 2
    3 7.
    Сделайте вывод по заданиям 1 и 2, ответьте письменно на контрольные вопросы.
    Контрольные вопросы
    1. Какими преимуществами обладает метод определения сопротивления мостом Уитстона по сравнению с методом амперметра и вольтметра?
    2. Какие способы измерения сопротивлений являются наиболее точными?
    3. Почему в мостовой схеме гальванометр имеет двухстороннюю шкалу с нулем посередине? Какой гальванометр предпочтителен в мостовой схеме: более чувствительный или более точный?
    4. Нарушится ли равновесие моста, если изменить: а) напряжение источника питания; б) сопротивление гальванометра?


    написать администратору сайта