Главная страница

частная гиста. Частная гиста


Скачать 38.86 Kb.
НазваниеЧастная гиста
Дата05.06.2021
Размер38.86 Kb.
Формат файлаdocx
Имя файлачастная гиста.docx
ТипДокументы
#214160

Частная гиста

1 морфологический субстрат рефлекторной деятельности нервной системы. Понятие о простой и сложной нервной дугах. Нерв: строение, васкуляризация, регенерация.

Морфологическим субстратом рефлекторной деятельности нервной системы являются рефлекторные дуги, представляющие собой цепь нейронов различного

функционального значения, тела которых расположены в разных отделах нервной системы – как в периферических узлах, так и в сером веществе центральной нервной системы.

С физиологической точки зрения нервная система делится на соматическую (или цереброспинальную), иннервирующую все тело человека, кроме внутренних органов, сосудов и желез, и автономную (или вегетативную), регулирующую деятельность перечисленных органов.

Рефлекторные дуги. Нервная ткань входит в состав нервной системы, функционирующей по рефлекторному принципу, морфологическим субстратом которого является рефлекторная дуга. Рефлекторная дуга представляет собой цепь нейронов, связанных друг с другом синапсами и обеспечивающих проведение нервного импульса от рецептора чувствительного нейрона до эфферентного окончания в рабочем органе.

Самая простая рефлекторная дуга состоит из двух нейронов — чувствительного и двигательного. В подавляющем большинстве случаев между чувствительными и двигательными нейронами включены вставочные, или ассоциативные, нейроны. У высших животных рефлекторные дуги состоят обычно из многих нейронов и имеют зна-чительно более сложное строение.

Рефлекторные дуги могут быть двух видов:

1) простые – моносинаптические рефлекторные дуги (рефлекторная дуга сухожильного рефлекса), состоящие из 2 нейронов (рецепторного (афферентного) и эффекторного), между ними имеется 1 синапс;

2) сложные – полисинаптические рефлекторные дуги. В их состав входят 3 нейрона (их может быть и больше) – рецепторный, один или несколько вставочных и эффекторный.

Особенности простой моносинаптической рефлекторной дуги:

1) территориально сближенные рецептор и эффектор;

2) рефлекторная дуга двухнейронная, моноси-наптическая;

3) нервные волокна группы Аa (70—120 м/с);

4) короткое время рефлекса;

5) мышцы, сокращающиеся по типу одиночного мышечного сокращения.

Особенности сложной моносинаптической рефлекторной дуги:

1) территориально разобщенные рецептор и эффектор;

2) рецепторная дуга трехнейронная;

3) наличие нервных волокон группы С и В;

4) сокращение мышц по типу тетануса

Нервы (нервные стволы) – это структуры, которые связывают центры головного и спинного мозга с рецепторами и рабочими органами. Они состоят из миелиновых и безмиелиновых афферентных и эфферентных волокон и прослоек соединительной ткани. Могут быть отдельные нейроны и отдельные нервные ганглии. Прослойка рыхлой соединительной ткани, окружающая каждое нервное волокно, называется эндоневрий; окружающая пучок нервных волокон — периневрий, который состоит из 5-6 слоев коллагеновых волокон; между этими слоями имеются щелевидные полости, выстланные нейроэпителием, в которых циркулирует жидкость. Весь нерв окружен прослойкой соединительной ткани, которая называется эпиневрий.В периневрии и эпиневрии имеются кровеносные сосуды и нервы нервов.

Развитие. Нервная система развивается из нервной трубки и ганглиозной пластинки. Из краниальной части нервной трубки дифференцируются головной мозг и органы чувств. Из туловищного отдела нервной трубки и ганглиозной пластинки

формируются спинной мозг, спинномозговые и вегетативные узлы и - хромаффинная ткань организма.

Регенерация. При повреждении нерва разрываются проходящие в нем нервные волокна. После разрыва волокна в нем образуются 2 конца — конец, который связан с телом нейрона, называется центральным; конец, не связанный с нервной клеткой, называется периферическим.

В периферическом конце происходят 2 процесса: 1) дегенерация и 2) регенерация. Вначале идет процесс дегенерации, заключающийся в том, что начинается набухание нейролеммоцитов, растворяется миелиНовый слой, осевой цилиндр фрагментируется, образуются капли (овоиды), состоящие из миелина и фрагмента осевого цилиндра. К концу 2-й недели происходит рассасывание овоидов, остается только неврилемма оболочки волокна. Нейролеммоциты продолжают размножаться, из них образуются ленты (тяжи).

После рассасывания овоидов осевой цилиндр центрального конца утолщается и образуется колба роста, которая начинает расти, скользя по лентам нейролеммоцитов. К этому времени между разорванными концами нервных волокон образуется нейроглиально-соединительнотканный рубец, являющийся препятствием для продвижения колбы роста. Поэтому не все осевые цилиндры могут пройти на противоположную сторону образовавшегося рубца. Следовательно, после повреждения нервов иннервация органов или тканей полностью не восстанавливается. Между тем часть осевых цилиндров, оснащенных колбами роста, пробивается на противоположную сторону нейроглиального рубца, погружается в тяжи нейролеммоцитов. Затем мезаксон навертывается на эти осевые цилиндры, образуется миелиновый слой оболочки нервного волокна. В том месте, где находится нервное окончание, рост осевого цилиндра приостанавливается, формируются терминали окончания и все его компоненты.

2. Морфологический субстрат рефлекторной деятельности нервной системы: рефлекторная дуга соматического типа. Нервные узлы: строение, положение в рефлекторной дуге.

3 Нервы и нервные узлы соматической и вегетативной нервной системы. Строение, положение в рефлекторной дуге, сравнительная характеристика. Регенерация нервов.

1) Центральная – спинной и головной мозг

2) Периферическая – нервы и нервные узлы.

-Нервы – это пучки нервных волокон, окруженные соединительнотканной оболочкой.

-Нервные узлы – это скопления тел нейронов за пределами ЦНС, например, солнечное сплетение.

1) Соматическая – управляет скелетными мышцами, подчиняется сознанию.

2) Вегетативная (автономная) – управляет внутренними органами, не подчиняется сознанию. Состоит из двух частей:

-Симпатическая: управляет органами во время стресса

А)повышает пульс, давление и концентрацию глюкозы в крови

Б)активизирует работу нервной системы и органов чувств

В)тормозит работу пищеварительной системы.

-Парасимпатическая система работает в состоянии покоя, приводит работу органов в норму (функции противоположные).

Рефлекторные дуги. Нервная ткань входит в состав нервной системы, функционирующей по рефлекторному принципу, морфологическим субстратом которого является рефлекторная дуга.

Рефлекторная дуга — это цепь нервных клеток, обязательно включающая первый — чувствительный и последний — двигательный (или секреторный) нейроны. Наиболее простыми рефлекторными дугами являются двух- и трехнейронные, замыкающиеся на уровне одного сегмента спинного мозга. В трехнейронной рефлекторной дуге первый нейрон представлен чувствительной клеткой, который движется вначале по периферическому отростку, а затем по центральному, направляясь к одному из ядер заднего рога спинного мозга. Здесь импульс передается следующему нейрону, отросток которого направляется из заднего рога в передний, к клеткам ядер (двигательных) переднего рога. Этот нейрон выполняет проводниковую (кондукторную) функцию. Он передает импульс от чувствительного (афферентного) нейрона к двигательному (эффе-рентному). Тело третьего нейрона (эфферентного, эффекторного, двигательного) лежит в переднем роге спинного мозга, а его аксон — в составе переднего корешка, а затем спинномозгового нерва простирается до рабочего органа (мышца).

С развитием спинного и головного мозга усложнились и связи в нервной системе. Образовались многонейронные сложные рефлекторные дуги, в построении и функциях которых участвуют нервные клетки, расположенные в вышележащих сегментах спинного мозга, в ядрах мозгового ствола, полушарий и даже в коре большого мозга. Отростки нервных клеток, проводящих нервные импульсы из спинного мозга к ядрам и коре головного мозга и в обратном направлении, образуют пучки, fasciculi.

Соматическая рефлекторная дуга.

1-ый нейрон оканчивается в задних рогах спинного мозга.

2–ой нейрон - из задних рогов в передние, не выходит за пределы спинного мозга.

3-ий нейрон – выходит из передних рогов.

Вегетативная рефлекторная дуга.

1-ый нейрон оканчивается в боковых рогах спинного мозга.

2-ой нейрон выходит за пределы сегмента и оканчиваются в преганглионарных/постганглионарных волокнах.

Регенерация нервов. Нейроны являются несменяемой клеточной популяцией. Им свойственна только внутриклеточная физиологическая регенерация, заключающаяся в непрерывной смене структурных белков цитоплазмы.

Отростки нейронов и соответственно периферические нервы обладают способностью к регенерации в случае их повреждения. При этом регенерации нервных волокон предшествуют явления дегенерации. Нейролеммоциты периферического отрезка волокна уже в первые сутки резко активизируются. В цитоплазме нейролеммоцитов увеличивается количество свободных рибосом и полисом, эндоплазматической сети. В цитоплазме нейролеммоцитов образуется значительное количество шарообразных слоистых структур различных размеров. Миелиновый слой как обособленная зона нейролеммоцита исчезает. В течение 3-4 суток нейролеммоциты значительно увеличиваются в объеме. Нейролеммоциты интенсивно размножаются, и к концу 2-й недели миелин и частицы осевых цилиндров рассасываются. В резорбции продуктов принимают участие как глиальные элементы, так и макрофаги соединительной ткани.

Осевые цилиндры волокон центрального отрезка образуют на концах булавовидные расширения - колбы роста и врастают в лентовидно расположенные нейролеммоциты периферического отрезка нерва и растут со скоростью 1-4 мм в сутки. Рост нервных волокон замедляется в области терминалей. Позднее происходит миелинизация нервных волокон и восстановление терминальных структу

4Нервная система: общая характеристика, отделы. Спинной мозг: гистологическое строение серого и белого вещества. Ядра серого вещества. Проводящие пути: понятие, разновидности, локализация.

С анатомической точки зрения нервную систему делят на цен тральную (головной и спинной мозг) и периферическую (перифе рические нервные узлы, стволы и окончания). Морфологическим субстратом рефлекторной деятельности нервной системы являются рефлекторные дуги, представляющие собой цепь нейронов различного функционального значения, тела которых расположены в разных отделах нервной системы — как в периферических узлах, так и в сером веществе центральной нервной системы. С физиологической точки зрения нервная система делится на соматическую (или цереброспинальную), иннервирующую все тело человека, кроме внутренних органов, сосудов и желез, и автономную (или вегетативную), регулирующую деятельность пер численных органов.

Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой серединной щелью, а сзади – соединительнотканной перегородкой. Внутренняя часть органа темнее — это его серое вещество. На периферии спинного мозга располагается более светлое белое вещество.

Серое вещество спинного мозга состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии. Основной составной частью серого вещества, отличающей его от белого, являются мультиполярные нейроны.

Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога. В процессе развития спинного мозга из нервной трубки образуются нейроны, группирующиеся в 10 слоях, или в пластинах. Для человека характерна следующая архитектоника указанных пластин: I—V пластины соответствуют задним рогам, VI—VII пластины — промежуточной зоне, VIII—IX пластины — передним рогам, X пластина — зона околоцентрального канала.

Серое вещество мозга состоит из мультиполярных нейронов трех типов. Первый тип нейронов является филогенетически более древним и характеризуется не-многочисленными длинными, прямыми и слабо ветвящимися дендритами (изоден-дритический тип). Второй тип нейронов имеет большое число сильно ветвящихся дендритов, которые переплетаются, образуя «клубки» (идиодендритический тип). Третий тип нейронов по степени развития дендритов занимает промежуточное положение между первым и вторым типами.

Белое вещество спинного мозга представляет собой совокупность продольно ориентированных преимущественно миелиновых волокон. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются проводящими путями спинного мозга.

Клетки, сходные по размерам, тонкому строению и функциональному значению, лежат в сером веществе группами, которые называются ядрами. Среди нейронов спинного мозга можно выделить следующие виды клеток: корешковые клетки, нейриты которых покидают спинной мозг в составе его передних корешков, внутренние клетки, отростки которых заканчиваются синапсами в пределах серого вещества спинного мозга, и пучковые клетки, аксоны которых проходят в белом веществе обособленными пучками волокон, несущими нервные импульсы от определенных ядер спинного мозга в его другие сегменты или в соответствующие отделы головного мозга, образуя проводящие пути. Отдельные участки серого вещества спинного мозга значительно отличаются друг от друга по составу нейронов, нервных волокон и нейроглий.

Проводящие пути – это совокупность нервных волокон, проходящих в определенных зонах белого вещества головного и спинного мозга, объединенных общностью морфологического строения и функции.

В спинном и головном мозге выделяют по строению и функции три группы проводящих путей.

1 - ассоциативные проводящие пути, 2 - комиссуральные проводящие пути, 3 - проекционные проводящие пути.

Ассоциативные пути соединяют участки серого вещества, различные функциональные центры (кора мозга, ядра) в пределах одной половины мозга. Выделяют короткие и длинные ассоциативные волокна. Короткие волокна соединяют близлежащие участки серого вещества и располагаются в пределах одной доли мозга – внутридолевые пучки волокон. Длинные ассоциативные волокна связывают участки серого вещества, расположенные на значительном расстоянии друг от друга, обычно в различных зонах. К ним относятся верхний продолговатый пучок, соединяющий кору лобной доли с теменной и затылочной, нижний продолговатый пучок, связывающий серое вещество височной доли с затылочной долей. В спинном мозге ассоциативные волокна связывают между собой нейроны, расположенные в различных сегментах. Они образуют собственные пучки спинного мозга (межсегментарные пучки), которые располагаются вблизи серого вещества. Короткие пучки перекидываются через 2-3 сегмента, а длинные пучки соединяют далеко расположенные сегменты спинного мозга.

Комиссуральные (спаечные) нервные волокна связывают нервные центры правого и левого полушария большого мозга, образуют мозолистое тело, спайку свода и переднюю спайку, т.е. комиссуральные волокна проходят из одного полушария в другое. В мозолистом теле располагаются волокна, соединяющие новые, более молодые отделы мозга. В белом веществе полушарий волокна мозолистого тела расходятся веерообразно, образуя лучистость мозолистого тела. В спинном мозге комиссуральные пути образованы волокнами, переходящими с одной стороны спинного мозга на другую (волокна спиноталамического пучка и др.).

Проекционные волокна соединяют нижележащие отделы с базальными ядрами и корой, и, наоборот, кору головного мозга, базальные ядра с ядрами мозгового ствола и со спинным мозгом. При помощи проекционных нервных волокон, достигающих кору большого мозга, картины внешнего мира как бы проецируются на кору, как на экран, где происходит высший анализ поступивших импульсов и сознательная их оценка.

5. Головной мозг. Общая морфофункциональная характеристика больших полушарий. Особенности строения в двигательных и чувствительных зонах. Цитоархитектоника. Миелоархитектоника. Гематоэнцефалический барьер. Представление о модульной организации коры.

В головном мозге различают серое и белое вещество, но распределение этих двух составных частей здесь значительно сложнее, чем в спинном мозге. Большая часть серого вещества головного мозга располагается на поверхности большого мозга и в мозжечке, образуя их кору. Меньшая часть образует многочисленные ядра ствола мозга.

Строение. Кора большого мозга представлена слоем серого вещества. Наиболее сильно развита она в передней центральной извилине. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга.. Различные участки ее, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представляют собой места высшего анализа и синтеза нервных импульсов. Резко очерченные границы между ними отсутствуют. Для коры характерно расположение клеток и волокон слоями.

Развитие коры больших полушарий (неокортекса) человека в эмбриогенезе происходит из вентрикулярной герминативной зоны конечного мозга, где расположены малоспециализированные пролиферирующие клетки. Из этих клеток дифференцируются

нейроциты неокортекса. При этом клетки утрачивают способность к делению и мигрируют в формирующуюся корковую пластинку. Вначале в корковую пластинку поступают нейроциты будущих I и VI слоев, т.е. наиболее поверхностного и глубокого слоев коры. Затем в нее встраиваются в направлении изнутри и кнаружи последовательно нейроны V, IV, III и II слоев. Этот процесс осуществляется за счет образования клеток в небольших участках вентрикулярной зоны в различные периоды эмбриогенеза (гетерохрон-но). В каждом из этих участков образуются группы нейронов, последовательно выстраивающихся вдоль одного или нескольких волокон радиальной глии в виде колонки.

Цитоархитектоника коры большого мозга. Мультиполярные нейроны коры весьма разнообразны по форме. Среди них можно выделить пирамидные, звездчатые, веретенообразные, паукообразные и горизонтальные нейроны.

Нейроны коры расположены нерезко отграниченными слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В двигательной зоне коры различают 6 основных слоев: I — молекулярный, II — наружный зернистый, III — nuрамидных нейронов, IV — внутренний зернистый, V — ганглионарный, VI — слой поли-морфных клеток.

Молекулярный слой коры содержит небольшое количество мелких ассоциативных клеток веретеновидной формы. Их нейриты проходят параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя.

Наружный зернистый слой образован мелкими нейронами, имеющими округлую, угловатую и пирамидальную форму, и звездчатыми нейроцитами. Дендриты этих клеток поднимаются в молекулярный слой. Нейриты или уходят в белое вещество, или, образуя дуги, также поступают в тангенциальное сплетение волокон молекулярного слоя.

Самый широкий слой коры большого мозга — пирамидный. От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Нейрит пирамидной клетки всегда отходит от ее основания.

Внутренний зернистый слой образован мелкими звездчатыми нейронами. В его состав входит большое количество горизонтальных волокон.

Ганглионарный слой коры образован крупными пирамидами, причем область прецентральной извилины содержит гигантские пирамиды.

Слой полиморфных клеток образован нейронами различной формы.

Модуль. Структурно-функциональной единицей неокортекса является модуль. Модуль организован вокруг кортико-кортикального волокна, представляющего собой волокно, идущее либо от пирамидных клеток того же полушария (ассоциативное волокно), либо от противоположного (комиссуральное).

Тормозная система модуля представлена следующими типами нейронов: 1) клетки с аксональной кисточкой; 2) корзинчатые нейроны; 3) аксоаксональные нейроны; 4) клетки с двойным букетом дендритов.

Миелоархитектоника коры. Среди нервных волокон коры полушарий большого мозга можно выделить ассоциативные волокна, связывающие отдельные участки коры одного полушария, комиссуральные, соединяющие кору различных полушарий, и проекционные волокна, как афферентные, так и эфферентные, которые связывают кору с ядрами низших отделов центральной нервной системы.

6 Мозжечок. Строение и функциональная характеристика, нейронный состав коры мозжечка. Межнейрональные связи. Афферентные и эфферентные волокна.

Мозжечок. Представляет собой центральный орган равновесия и координации движений. Он связан со стволом мозга афферентными и эфферентными проводящими пучками, образующими в совокупности три пары ножек мохжечка. На поверхности мозжечка много извилин и бороздок, которые значительно увеличивают ее площадь. Борозды и извилины создают на разрезе характерную для мозжечка картину «древа жизни». Основная масса серого вещества в мозжечке располагается на поверхности и образует его кору. Меньшая часть серого вещества лежит глубоко в белом веществе в виде центральных ядер. В центре каждой извилины имеется тонкая прослойка белого вещества, покрытая слоем серого вещества — корой.

В коре мозжечка различают три слоя: наружный — молекулярный, средний — ганглионарный слой, или слой грушевидных нейронов, и внутренний — зернистый.

Ганглиозный слой содержит грушевидные нейроны. Они имеют нейриты, которые, покидая кору мозжечка, образуют начальное звено его эфферентных тормозных путей. От грушевидного тела в молекулярный слой отходят 2—3 дендрита, которые пронизывают всю толщу молекулярного слоя. От основания тел этих клеток отходят нейриты, проходящие через зернистый слой коры мозжечка в белое вещество и заканчивающиеся на клетках ядер мозжечка. Молекулярный слой содержит два основных вида нейронов: кор-зинчатые и звездчатые. Корзинчатые нейроны находятся в нижней трети молекулярного слоя. Их тонкие длинные дендриты ветвятся преимущественно в плоскости, расположенной поперечно к извилине. Длинные нейриты клеток всегда идут поперек извилины и параллельно поверхности над грушевидными нейронами.

Звездчатые нейроны лежат выше корзинчатых и эывают двух типов. Мелкие звездчатые нейроны снабжены тонкими короткими дендритами и слаборазветвленными нейритами, образующими синапсы. Крупные звездчатые нейроны имеют длинные и сильно разветвленные дендриты и нейриты.

Зернистый слой. Первым типом клеток этого слоя можно считать зерновидные нейроны, или клетки-зерна. Клетка имеет 3—4 коротких дендрита, заканчивающихся в этом же слое концевыми ветвлениями в виде лапки птицы.

Нейриты клеток-зерен проходят в молекулярный слой и в нем делятся на две ветви, ориентированные параллельно поверхности коры вдоль извилин мозжечка.

Вторым типом клеток зернистого слоя мозжечка являются тормозные большие звездчатые нейроны. Различают два вида таких клеток: с короткими и длинными нейритами. Нейроны с короткими нейритами лежат вблизи ганг-лионарного слоя. Их разветвленные дендриты распространяются в молекулярном слое и образуют синапсы с

параллельными волокнами — аксонами клеток-зерен. Нейриты направляются в зернистый слой к клубочкам мозжечка и заканчиваются синапсами на концевых ветвлениях дендритов клеток-зерен. Немногочисленные звездчатые нейроны с длинными нейритами имеют обильно ветвящиеся в зернистом слое дендриты и нейриты, выходящие в белое вещество.

Третий тип клеток составляют веретеновидные горизонтальные клетки. Они имеют небольшое вытянутое тело, от которого в обе стороны отходят длинные горизонтальные дендриты, заканчивающиеся в ганглионарном и зернистом слоях. Нейриты же этих клеток дают коллатерали в зернистый слой и уходят в белое вещество

Глиоциты. Кора мозжечка содержит различные глиальные элементы. В зернистом слое имеются волокнистые и протоплазматические астроциты. Ножки отростков волокнистых астроцитов образуют периваскулярные мембраны. Во всех слоях в мозжечке имеются олигодендроциты. Особенно богаты этими клетками зернистый слой и белое вещество мозжечка. В ганглионарном слое между грушевидными нейронами лежат глиальные клетки с темными ядрами. Отростки этих клеток направляются к поверхности коры и образуют глиальные волокна молекулярного слоя мозжечка.

Межнейрональные связи. Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами — моховидными и так называемыми лазящими волокнами.

Моховидные волокна идут в составе оливомозжечкового и мостомозжечкового путей и опосредованно через клетки-зерна оказывают на грушевидные клетки возбуждающее действие.

Лазящие волокна поступают в кору мозжечка, по-видимому, по спинно-мозжечковому и вестибуломозжечковому путям. Они пересекают зернистый слой, прилегают к грушевидным нейронам и стелются по их дендритам, заканчиваясь на их поверхности синапсами. Лазящие волокна передают возбуждение непосредственно грушевидным нейронам.

7 Органы чувств. Классификация. Понятие об анализаторе. Отделы зрительного анализатора. Общий план строения глазного яблока

Классификация органов чувств.

В зависимости от строения и функции рецепторной части органы чувств делятся на три типа.

К первомутипу относятся органы чувств, у которых рецепторами являются специализированные нейросенсорные клетки (орган зрения, орган обоняния), преобразующие внешнюю энергию в нервный импульс.

Ко второмутипу относятся органы чувств, у которых рецепторами являются не нервные, а эпителиальные клетки (сенсоэпителиальные). От них преобразованное раздражение передается дендритам чувствительных нейронов, которые воспринимают возбуждение сенсоэпителиальных клеток и порождают нервный импульс (органы слуха, равновесия, вкуса).

К третьемутипу с невыраженной анатомически органной формой относятся проприоцептивная (скелетно-мышечная) кожная и висцеральная сенсорные системы. Периферические отделы в них представлены различными инкапсулированными и неинкапсулированными рецепторами.

Зрительный анализатор – совокупность структур, воспринимающих световую энергию в виде электромагнитного излучения (с длиной волны 400–700 нм) и дискретных частиц фотонов, или квантов, и формирующих зрительные ощущения.

С помощью глаза воспринимается 80–90% всей информации об окружающем мире.

Орган зрения

Орган зрения как любой анализатор состоит из трех отделов:

1) глазного яблока, в котором расположены рецепторы — палочки и колбочки;

2) проводящего аппарата — 2я пара черепных нервов — зрительный нерв;

3) коркового центра анализатора, расположенного в затылочной доле коры больших полушарий.

8 Общий план строения глазного яблока. Диоптрический и аккомадационный аппараты глаза: структурные компоненты и т.д.

Аккомодационный аппарат. Аккомодационный аппарат глаза обеспечивает фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения. Он включает в себя радужку с отверстием в центре — зрачком — и ресничное тело с ресничным пояском хрусталика. Фокусировка изображения обеспечивается за счёт изменения кривизны хрусталика, которая регулируется цилиарной мышцей. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет, настраиваясь на видение близко расположенных объектов. При расслаблении мышцы хрусталик становится более плоским, и глаз приспосабливается для видения удалённых предметов. Так же в фокусировке изображения принимает участие и сам глаз в целом. Если фокус находится за пределами сетчатки — глаз (за счёт глазодвигательных мышц) немного вытягивается (чтобы видеть вблизи). И наоборот округляется, при рассматривании далёких предметов.

Зрачок представляет собой отверстие переменного размера в радужной оболочке. Он выполняет роль диафрагмы глаза, регулируя количество света, падающего на сетчатку. При ярком свете кольцевые мышцы радужки сокращаются, а радиальные расслабляются, при этом зрачок сужается, и количество света, попадающего на сетчатку уменьшается, это предохраняет её от повреждения. При слабом свете наоборот сокращаются радиальные мышцы, и зрачок расширяется, пропуская в глаз больше света.

Диоптрический или светопреломляющий аппарат — роговица, хрусталик, стекловидное тело, жидкость камер глаза.

Роговица — прозрачная часть наружной фиброзной оболочки глаза склеры. Она состоит из пяти слоев:

-наружный эпителий является многослойным плоским неороговевающим эпителием, который состоит из трех слоев — базального, шиповатого и слоя плоских клеток. В эпителии содержится большое количество свободных нервных окончаний, обусловливающих высокую чувствительность роговицы. Передний эпителий роговицы в области лимба переходит в эпителий конъюнктивы глаза;

-передняя пограничная (боуменова) мембрана. Образована упорядочено, в виде трехмерной сети, расположенными коллагеновыми волокнами. Играет роль базальной мембраны;

-собственное вещество роговицы. Образовано оформленной плотной волокнистой соединительной тканью. Оно состоит из параллельно лежащих коллагеновых волокон,

основного вещества и расположенных между волокнами фиброцитов. Собственное вещество роговицы продолжается в склеруплотную непрозрачную оболочку. Место перехода называется лимбом. Здесь содержится большое количество сосудов, из которых питаются наружные отделы роговицы. Питание ее центральных отделов происходит за счет веществ, содержащихся в жидкости передней камеры глаза;

-задняя пограничная (десцеметова) мембрана имеет такое же строение, как и наружная мембрана;

-задний эпителий — однослойный плоский эпителий (часто называется эндотелием).

В роговице нет собственных сосудов, питание идет за счет диффузии веществ из передней камеры глаза и кровеносных сосудов лимба. При воспалении сосуды из лимба могут проникать в собственное вещество роговицы, что создает ее непрозрачность (катаракта). Роговица богато иннервируется, нервы лежат не только в собственном веществе, но и в переднем эпителии.

Строение хрусталика. Хрусталик представляет собой двояковыпуклую линзу. Передняя поверхность хрусталика образована однослойным кубическим эпителием, который по направлению к экватору становится выше.

Между эпителиальными клетками хрусталика имеются щелевидные контакты. Хрусталик состоит из тонких хрусталиковых волокон, которые составляют его основную массу и содержат кристаллины. Снаружи хрусталик покрыт капсулой — толстой базальной мембраной со значительным содержанием ретикулярных волокон.

Внутри хрусталика отсутствуют нервы и кровеносные сосуды, что обеспечивает его прозрачность. Внутри глаза хрусталик поддерживается с помощью нитей цилиарной (цинновой) связки, которая прикрепляется к капсуле. Изменение степени натяжения нитей меняет кривизну хрусталика, при этом изменяется и его преломляющая способность. Благодаря этому возможна аккомодация - способность четкого видения различно удаленных предметов. У молодых людей хрусталик обладает высокой эластичностью, которая постепенно теряется с возрастом. Это ведет к нарушению восприятия близко расположенных объектов (пресбиопия). При старении также может нарушаться прозрачность хрусталика и его капсулы — возникает хрусталиковая катаракта.

Стекловидное тело — это основная преломляющая среда глаза. Помимо этой наиболее важной функции стекловидное тело участвует в обменных процессах сетчатки, а также фиксирует хрусталик и препятствует (в норме) отслоению сетчатки от пигментного эпителия. Оно представлено межклеточным веществом (99 % воды и белок витреин), которое преобладает, и единичными клетками (фиброциты, макрофаги и лимфоциты).

9 Понятие об анализаторе. Отделы зрительного анализатора. Рецепторный аппарат глаза ……..

Зрительный анализатор – совокупность структур, воспринимающих световую энергию в виде электромагнитного излучения (с длиной волны 400–700 нм) и дискретных частиц фотонов, или квантов, и формирующих зрительные ощущения.

С помощью глаза воспринимается 80–90% всей информации об окружающем мире.

Орган зрения

Орган зрения как любой анализатор состоит из трех отделов:

1) глазного яблока, в котором расположены рецепторы — палочки и колбочки;

2) проводящего аппарата — 2я пара черепных нервов — зрительный нерв;

3) коркового центра анализатора, расположенного в затылочной доле коры больших полушарий.

Рецепторный аппарат. Рецепторный аппарат глаза представлен зрительной частью сетчатки, содержащей фоторецепторные клетки (высокодифференцированные нервные элементы), а также тела и аксоны нейронов (проводящие нервное раздражение клетки и нервные волокна), расположенных поверх сетчатки и соединяющиеся в слепом пятне в зрительный нерв.

Сетчатка также имеет слоистое строение. Устройство сетчатой оболочки чрезвычайно сложное. Микроскопически в ней выделяют 10 слоёв. Самый наружный слой является свето-цветовоспринимающим, он обращен к сосудистой оболочке (вовнутрь) и состоит из нейроэпителиальных клеток — палочек и колбочек, воспринимающих свет и цвета, следующие слои образованы проводящими нервное раздражение клетками и нервными волокнами. У человека толщина сетчатки очень мала, на разных участках она составляет от 0,05 до 0,5 мм.

Свет входит в глаз через роговицу, проходит последовательно сквозь жидкость передней (и задней) камеры, хрусталик и стекловидное тело, пройдя через всю толщу сетчатки, попадает на отростки светочувствительных клеток — палочек и колбочек. В них протекают фотохимические процессы, обеспечивающие цветовое зрение.

Областью наиболее высокого (чувствительного) зрения, центрального, в сетчатке является так называемое жёлтое пятно с центральной ямкой, содержащей только колбочки (здесь толщина сетчатки до 0,08—0,05 мм) - ответственных за цветовое зрение (цветоощущение). То есть вся световая информация, которая попадает на жёлтое пятно, передается в мозг наиболее полно. Место на сетчатке, где нет ни палочек, ни колбочек называется слепым пятном; оттуда зрительный нерв выходит на другую сторону сетчатки и далее в мозг.

В сетчатке человека насчитывают около 130 млн палочек и 7 млн колбочек. Расположены они неравномерно: в центре сетчатки находятся преимущественно колбочки, дальше от центра — колбочки и палочки, а на периферии преобладают палочки.

Колбочки обеспечивают восприятие формы и цвета предмета. Они малочувствительны к свету, возбуждаются только при ярком освещении. Больше колбочек вокруг центральной ямки. Это место скопления колбочек называют жёлтым пятном. Жёлтое пятно, особенно его центральную ямку, считают местом наилучшего видения. В норме изображение всегда фокусируется оптической системой глаза на жёлтом пятне. При этом предметы, которые воспринимаются периферическим зрением, различаются хуже.

Палочки имеют удлинённую форму, цвет не различают, но очень чувствительны к свету и поэтому возбуждаются даже при малом, так называемом сумеречном, освещении. Поэтому мы можем видеть даже в плохо освещённой комнате или в сумерках, когда очертания предметов едва отличаются. Благодаря тому, что палочки преобладают на периферии сетчатки, мы способны видеть «уголком глаза», что происходит вокруг нас.

Итак фоторецепторы воспринимают свет и превращают его в энергию в нервный импульс, который продолжает свой путь в сетчатке и проходит через третий слой клеток, образованный соединением фоторецепторов с нервными клетками, имеющими по два отростка (их называют биполярными). Далее информация по зрительным нервам через средний и промежуточный мозг передается в зрительные зоны коры головного мозга. На нижней поверхности мозга зрительные нервы частично пересекаются, поэтому часть информации от правого глаза поступает в левое полушарие и наоборот.

Место, где зрительный нерв выходит из сетчатки, называется слепым пятном. Оно лишено фоторецепторов. Предметы, изображение которых попадает на этот участок, не видны. Площадь слепого пятна сетчатки глаза человека (в норме) составляет от 2,5 до 6 мм².

Развитие органа зрения

Зачаток глаза появляется у 22дневного эмбриона в виде парных неглубоких инвагинаций — глазных бороздок в переднем мозге. После закрытия нейропор инвагинации увеличиваются

и формируются глазные пузыри. Из нервного гребня выселяются клетки, которые участвуют в образовании склеры и цилиарной мышцы, а также дифференцируются в эндотелиальные клетки и фибробласты роговицы.

10


написать администратору сайта