Главная страница
Навигация по странице:

  • Что такое пластичность металла, какими стандартами характеристиками механических свойств она оценивается При каких испытаниях и как они определяются

  • Как изменяются структура и свойства сталей 30 и У11 в результате 750 и 850

  • Опишите резины специального назначения (приведите классификацию по группам, охарактеризуйте свойства, области применения).

  • Маслобензостойкие

  • Акрилатные каучуки

  • Износостойкие резины

  • Что такое пластичность металла, какими стандартами характеристиками механических свойств она оценивается При каких испытаниях и как они определяются


    Скачать 155.93 Kb.
    НазваниеЧто такое пластичность металла, какими стандартами характеристиками механических свойств она оценивается При каких испытаниях и как они определяются
    Дата21.03.2021
    Размер155.93 Kb.
    Формат файлаdocx
    Имя файла-1067478593.docx
    ТипДокументы
    #186789

    СОДЕРЖАНИЕ


    1.Что такое пластичность металла, какими стандартами характеристиками механических свойств она оценивается? При каких испытаниях и как они определяются? 3

    1.Вычерти диаграмму состояния железо – карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите фазовые и структурны прекращения в сплаве, содержащем 5,4% углерода, при охлаждении из жидкого состояния. Постройте кривую охлаждения (применением правила фаз Гиббса) для этого сплава. Укажите название и структуру сплава при комнатной температуре. По правилу Курнакова определите количественное соотношения фаз в сплаве при температуре 1180оС. 5

    3.Как изменяются структура и свойства сталей 30 и У11 в результате 750 и 850оС? Объясните с применением диаграммы состояния железо-цементит. Назовите предложенные режимы закалки, выберите оптимальный режим закалки для каждой стали и обоснуйте его. 8

    5.Опишите резины специального назначения (приведите классификацию по группам, охарактеризуйте свойства, области применения). 12

    Список использованной литературы 14
    1. Что такое пластичность металла, какими стандартами характеристиками механических свойств она оценивается? При каких испытаниях и как они определяются?


    Пластичность – свойство твердых тел необратимо деформироваться под действием механических нагрузок.

    Отсутствие или небольшое значение пластичности называется хрупкостью.

    Характеристики пластичности определяют при статических испытаниях. Статическими называют испытания, при которых прилагаемая нагрузка возрастает медленно и плавно. Чаще применяют испытания на растяжение, позволяющие по результатам одного опыта установить нескольких важных механических характеристик металла или сплава. Для испытания на растяжение используют стандартные образцы (ГОСТ 1497-84). Машины для испытания снабжены прибором, записывающим диаграмму растяжения (рисунок 1).

    Относительное удлинение характеризует пластичность материала.



    Рисунок 1 – Диаграмма растяжения образца из низкоуглеродистой стали

     

    Относительное удлинение δ представляет собой отношение приращения длины образца после его разрыва к первоначальной расчетной длине l0 и выражается в процентах:

    ,

    где lк – длина образца после разрыва

    Под относительным сужением понимают отношение уменьшения поперечного сечения разорванного образца к первоначальной площади поперечного сечения, выраженное в процентах:

    ,

    где Fк – площадь поперечного сечения в месте разрыва.
    1. Вычерти диаграмму состояния железо – карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите фазовые и структурны прекращения в сплаве, содержащем 5,4% углерода, при охлаждении из жидкого состояния. Постройте кривую охлаждения (применением правила фаз Гиббса) для этого сплава. Укажите название и структуру сплава при комнатной температуре. По правилу Курнакова определите количественное соотношения фаз в сплаве при температуре 1180оС.

    Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

    При кристаллизации сплавов по линии АВ из жидко­го раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллиза­ции сплавов с содержанием углерода до 0,1 % заканчи­вается по линии АН с образованием α (δ)-твердого раст­вора. На линии HJBпротекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE. 

    При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при темпера­турах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристал­лизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3 % образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3 Л[А2,146,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

    Таким образом, структура чугунов ниже 1147°С будет: доэвтектических — аустенит+ледебурит, эвтектических — ледебурит и заэвтектических — цементит (первичный)+ледебурит.

    Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.

    Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавысостоят из феррита и аустенита.

    Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшениярастворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

    В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8 П[Ф0,036,67].

    Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

    Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит+цементит третичный и называются техническим железом.

    Доэвтектоидные стали при температуре ниже 727ºС имеют структуру феррит+перлит и заэвтектоидные – перлит+цементит вторичный в виде сетки по границам зерен.

    В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).

    Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.

    Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

    C = K + 1 – Ф,

    где    С – число степеней свободы системы;

    К – число компонентов, образующих систему;

    1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

    Ф – число фаз, находящихся в равновесии.

    Сплав железа с углеродом, содержащий 5,4%С, называется заэвтектическим чугуном. Его структура при комнатной температуре цементит (вторичный) + перлит + ледебурит (перлит + цементит). 



     а)                                                                                б) 

    Рисунок 3: а - диаграмма железо-цементит, б - кривая охлаждения для сплава, содержащего 5,4% углерода
    1. Как изменяются структура и свойства сталей 30 и У11 в результате 750 и 850оС? Объясните с применением диаграммы состояния железо-цементит. Назовите предложенные режимы закалки, выберите оптимальный режим закалки для каждой стали и обоснуйте его.

    Исходная структура высокоуглеродистой инструментальной стали У11 до нагрева под закалку – перлит + карбиды.

    Критические точки для стали У11: Аc1=730ºС, Аcm=810ºС.

    Оптимальный режим нагрева под закалку для заэвтектоидных сталей (%С>0,8%) составляет АС1+(30÷50º), т.е. для У11 – 760–780ºС. При этом после закалки имеем мелкое зерно, обеспечивающее наилучшие механические свойства стали У11.

    Нагрев и выдержка стали У11 при температуре 850ºС перед закалкой приводит к росту зерна и ухудшению механических свойств стали после термической обработки. Крупнозернистая структуравызывает повышенную хрупкость стали, иногда приводит к трещинам.

    Закалка доэвтектоидной стали заключается в нагреве стали до температуры выше критической (Ас3), в выдержке и последующем охлаждении со скоростью, превышающей критическую.

    Температура точки Ас3 для стали 30 составляет 820°С.

    Если доэвтектоидную сталь нагреть выше Ас1, но ниже Ас3, то в ее структуре после закалки наряду с мартенситом будут участки феррита. Присутствие феррита как мягкой составляющей снижает твердость стали после закалки. При нагреве до температуры 750°С (ниже точки Ас3) структура стали 30 – аустенит + феррит, после охлаждения со скоростью выше критической структура стали – мартенсит + феррит.

    Доэвтектоидные стали для закалки следует нагревать до температуры на 30-50°С выше Ас3. Температура нагрева стали под закалку, таким образом, составляет 850-870°С. Структура стали 30 при температуре нагрева под закалку – аустенит, после охлаждения со скоростью выше критической – мартенсит.

    1. Для изготовления деталей молотовых штампов выбрана сталь 5ХНМ. Расшифруйте марку, приведите примерный химический состав. Назначьте режим упрочняющей термообработки. Опишите сущность происходящих при термообработке превращений, микроструктуру и главные свойства штампов после термообработки.

    5ХНМ - Сталь инструментальная штамповая. Использование в промышленности: молотовые штампы паровоздушных и пневматических молотов с массой падающих частей свыше 3 т, прессовые штампы и штампы машинной скоростной штамповки при горячем деформировании легких цветных сплавов, блоки матриц для вставок горизонтально-ковочных машин. 

    Химический состав в % материала 5ХНМ в соответствии с ГОСТом 5950-2000

    Химический элемент

    %

    Углерод (С)

    0,5 - 0,6

    Кремний (Si)

    0,1 - 0,4

    Медь (Cu), не более

    0,3

    Марганец (Mn)

    0,5 - 0,8

    Молибден (Mo)

    0,15 - 0,3

    Никель (Ni)

    1,4 - 1,8

    Фосфор (P), не более

    0,03

    Хром (Cr)

    0,5 - 0,8

    Сера (S), не более

    0,03

    Для изготовления штампов применяются следующие марки сталей: углеродистые и легированные 5ХНМ и некоторые другие.

    Основные требования, предъявляемые к стали для изготовления штампов, следующие:

    1) высокая прочность, достаточное сопротивление удару и высокая износоустойчивость при повышенных температурах, - чтобы штампы не разрушались и сохраняли свою форму во время работы;

    2) хорошая теплопроводность для быстрого отвода тепла от рабочей поверхности в глубь штампа;

    3) значительная прокаливаемость (что особенно важно для крупных штампов);

    4) высокая сопротивляемость возникновению трещин разгара, возникающих на рабочей поверхности вследствие периодичности нагрева и охлаждения штампов.

    Штампы, изготовленные из углеродистой стали, быстро выходят из строя, вследствие малой глубины закалённого слоя и низкого предела температур (325-350°), до которых штамп может нагреваться во время работы. Поэтому углеродистую сталь можно применять для малых штампов простой формы.

    Для изготовления штампов, работающих в тяжёлых условиях, наиболее часто применяется сталь 5ХНМ или её заменитель сталь 5ХГМ. Никель в стали 5ХГМ заменён марганцем, который, сохраняя глубокую прокаливаемость стали, несколько уменьшает ударную вязкость. Для получения необходимой вязкости штампы из стали 5ХГМ отпускают при более высокой температуре, чем штампы из стали 5ХНМ.

    Кованые заготовки штампов подвергают отжигу, чтобы снизить твёрдость, снять внутренние напряжения и подготовить структуру для последующей закалки. Поковки, остывающие после их изготовления медленно, в утеплённых ямах или шлаке, можно загружать для отжига в печь, нагретую до требуемой температуры, и греть со скоростью, которую допускает данная печь. Поковки, остывающие после их изготовления быстро, на полу мастерской, загружают в печь при температуре 400-500° и греют до требуемой температуры вместе с печью.

    Если нагрев происходит неравномерно, то необходимо во всех случаях замедлять его, производя одну-две выдержки при промежуточных температурах. Медленное остывание после нагрева мелких и средних поковок можно достичь упаковкой их в ящики с засыпкой, а крупных поковок - периодическим отключением и включением печи.

    Штампы, поступающие в капитальный ремонт, вместо отжига подвергают высокому отпуску. Для этого штампы закладывают в печь, нагретую до требуемой температуры, выдерживают 2-3 часа, вынимают из печи и оставляют на воздухе до полного охлаждения.

    Иногда крупные штампы подвергаются закалке в заготовках (кубиках) до механической обработки. При этом потеря твёрдости компенсируется отсутствием деформации готового штампа. Такие заготовки нагревают под закалку без упаковки.



    При закалке полностью обработанных штампов необходимо принять меры для предохранения рабочей поверхности от окисления (рисунок слева). В качестве изолирующей засыпки применяют отработанный карбюризатор или пережжённую чугунную стружку.

    Мелкие и средние штампы, а также кубики можно загружать в печь, нагретую до температуры закалки, без опасения образования трещин или деформации, тем более, что рабочая часть штампа прогревается сравнительно медленно, так как находится под слоем засыпки. Прогрев при температуре закалки должен обеспечить полное растворение углерода и других элементов в аустените.

    Ниже приводим режим термической обработки штампов, изготовленных из стали 5ХНМ в электропечи Н15, применяемый на одном из заводов в течение ряда лет и полностью себя оправдавший (штамп Ф 150 мм, высотой 140 мм):

    1) загрузка в печь, нагретую до температуры 830-850°, и выдержка в течение 2 час.;

    2) закалка в масле, выдержка до достижения температуры 100-200° примерно 15-20 мин.;

    3) загрузка в отпускную печь, нагретую до температуры 350 -400°, нагрев до температуры 520-560° при общей выдержке 6 час.;

    4) выгрузка на воздух, зачистка и контроль твёрдости (Rc = 41 -47).

    При загрузке нескольких штампов в печь следует для ускорения нагрева ставить их на расстоянии 100-150 мм один от другого.

    Повышение температуры отпуска, как правило, повышает вязкость стали, но снижает ее твердость, прочность и износостойкость. В связи с этим для сохранения износостойкости и твердости стали температуру отпуска выбирают пониженной, однако не ниже температуры разогрева инструмента при эксплуатации.


    1. Опишите резины специального назначения (приведите классификацию по группам, охарактеризуйте свойства, области применения).


    Специальные резины подразделяют на несколько видов: маслобензостойкие, теплостойкие, светоозоностойкие, износостойкие, электротехнические, стойкие к гидравлическим жидкостям.

    Маслобензостойкие резины получают на основе каучуков хлоропренового (наирит), СКН и тиокола.

    Наирит является отечественным хлоропреновым каучуком. Хлоропрену соответствует формула СН2==ССI—СН=СН2.

    Вулканизация может проводиться термообработкой даже без серы, так как под действием температуры каучук переходит в термостабильное состояние.

    Резины на основе наирита обладают высокой эластичностью, вибростойкостью, озоностойкостью, устойчивы к действию топлива и масел, хорошо сопротивляются тепловому старению. (Окисление каучука замедляется экранирующим действием хлора на двойные связи.) По температуроустойчивости и морозостойкости (от —35 до —40 °С) они уступают как НК, так и другим СК.

    Электроизоляционные свойства резины на основе полярного наирита ниже, чем у резины на основе неполярных каучуков. (За рубежом полихлоропреновый каучук выпускается под названием неопрен, пербунан-С и др.).

    СКН — бутадиеннитрильный каучук — продукт совместной полимеризации бутадиена с нитрилом акриловой кислоты —СН2—СН =СН—СН2—СН2—СНСN—

    Резины на основе СКН обладают высокой прочностью ((в = 35 МПа), хорошо сопротивляются истиранию, но по эластичности уступают резинам на основе НК, превосходят их по стойкости к старению и действию разбавленных кислот и щелочей. Резины могут работать в среде бензина, топлива, масел в интервале температур от -30 до 130 °С.

    Резины на основе СКН применяют для производства ремней, конвейерных лент, рукавов, маслобензостойких резиновых деталей (уплотнительные прокладки,манжеты и т. п.).

    Тиоколы – торговое название полисульфидных каучуков.
    Из смеси каучука с серой, наполнителями и другими веществами формуют нужные изделия и подвергают их нагреванию. При этих условиях атомы серы присоединяются к двойным связям макромолекул каучука и «сшивают» их, образуя дисульфидные «мостики». В результате образуется гигантская молекула, имеющая три измерения в пространстве — как бы длину, ширину и толщину. Полимер приобретает пространственную структуру. Если к каучуку добавить больше серы, чем нужно для образования резины, то при вулканизации линейные молекулы окажутся «сшитыми» в очень многих местах, и материал утратит эластичность, станет твёрдым — получится эбонит. До появления современных пластмасс эбонит считался одним из лучших изоляторов.

    Полисульфидный каучук, или тиокол, образуется при взаимодействии галоидопроизводных углеводородов с многосернистыми соединениями щелочных металлов: —СН2—СН2—S2—S2—

    Тиокол вулканизуется перекисями. Присутствие в основной цепи макромолекулы серы придает каучуку полярность, вследствие чего он становится устойчивым к топливу и маслам, к действию кислорода, озона, солнечного света. Сера также сообщает тиоколу высокую газонепроницаемость (выше, чем у НК), поэтому тиокол — хороший герметизирующий материал.

    Механические свойства резины на основе тиокола невысокие.
    Эластичность резин сохраняется при температуре от —40 до —60 °С.
    Теплостойкость не превышает 60—70 °С. Тиоколы новых марок работают при температуре до 130 °С.

    Акрилатные каучуки — сополимеры эфиров акриловой (или метакриловой)кислоты с акрилонитрилом и другими полярными мономерами — можно отнести к маслобензостойким каучукам.

    Каучуки выпускают марок БАК-12, БАКХ-7, ЭАХ.

    Для получения высокопрочных резин вводят усиливающие наполнители.

    Достоинством акрилатных резин является стойкость к действию серосодержащих масел при высоких температурах; их широко применяют в автомобилестроении. Они стойки к действию кислорода, достаточно теплостойки, обладают адгезией к полимерам и металлам.

    Недостатками БАК являются малая эластичность,низкая морозостойкость, невысокая стойкость к воздействию ; горячей воды и пара.

    Износостойкие резины получают на основе полиуретановых каучуков СКУ.

    Полиуретановые каучуки обладают высокой прочностью, эластичностью, сопротивлением истиранию, маслобензостойкостью. В структуре каучука нет ненасыщенных связей, поэтому он стоек к кислороду и озону, его газонепроницаемость в 10—20 раз выше, чем газопроницаемость НК.

    Рабочие температуры резин на его основе составляют от —30 до 130°С.

    Уретановые резины стойки к воздействию радиации. Зарубежные названия уретановых каучуков — , вулколлан, адипрен, джентан, урепан.
    Резины на основе СКУ применяют для автомобильных шин, конвейерных лент, обкладки труб и желобов для транспортирования абразивных материалов, обуви и др.

    Список использованной литературы


    1. Гуляев, А.П. Металловедение: учебник для вузов / А.П.Гуляев. - М.: Металлургия, 1986.- 541 с.

    2. Мозберг, Р.К. Материаловедение: учебник для вузов / Р.К.Мозберг. - М.: Металлургия, 1991. - 500 с.

    3. Лахтин, Ю.М. Основы металловедения: учебник для вузов / Ю.М.Лахтин. – М.: Металлургия, 1988. – 400 с.

    4. Новиков, И.И. Теория термической обработки: учебник для вузов / И.И.Новиков. – М.: Металлургия, 1988. – 479 с.

    5. Башнин, Ю.А. Технология термической обработки / Ю.А.Башнин, Б.К.Ушаков, А.Г.Секей. – М.: Металлургия, 1986. – 424 с.

    6. Гольдштейн, М.И. Специальные стали / М.И.Гольдштейн, С.В.Грачев, Ю.Г.Веслер. – М.: металлургия, 1985. – 407 с.


    написать администратору сайта