Главная страница
Навигация по странице:

  • 12. Что называется коэффициентом теплопроводности и от чего он зависит Каково влияние пористости и влажности на величину коэффициента теплопроводности

  • 13Пористость материалов. Определение пористости. Влияние пористости на свойства материалов.

  • (16)Технологические и химические свойства строительных материалов.

  • Технологические качества

  • Контрольная работа по дисциплине строительные материалы. Ответы на вопрос. С-194. Строительные материалы. Дайте классификацию строительных материалов и изделий по их функции и области применения


    Скачать 0.53 Mb.
    НазваниеДайте классификацию строительных материалов и изделий по их функции и области применения
    АнкорКонтрольная работа по дисциплине строительные материалы
    Дата12.05.2021
    Размер0.53 Mb.
    Формат файлаdocx
    Имя файлаОтветы на вопрос. С-194. Строительные материалы.docx
    ТипДокументы
    #203987
    страница6 из 9
    1   2   3   4   5   6   7   8   9

    10. Теплофизические свойства (теплоемкость, теплопроводность, огнеупорность, огнестойкость): определение, формулы для расчета.


    Теплопроводность – свойство материала передавать через толщу теплоту при наличии разности температур на поверхностях, ограничивающих материал. Знать теплопроводность материала необходимо при теплотехническом расчете толщины стен и перекрытий отапливаемых зданий, а также при определении требуемой толщины тепловой изоляции горячей поверхностей, например трубопровод, заводских печей и т. д.

    Теплоемкость – свойство материала поглощать при нагревании определенное количество теплоты и выделять ее при охлаждении. Теплоемкость материалов учитывают при расчете теплоустойчивости стен и перекрытий отапливаемых зданий, подогрева составляющих бетона и раствора для зимних работ, а также при расчете печей.

    Формула: C = Q/(m*(t2 – t1))

    Огнестойкость – способность материала противостоять действию высоких температур и воды в условиях пожара. По степени огнестойкости строительные материалы делятся на несгораемые, трудносгораемые и сгораемые.

    Несгораемые материалы под действием огня или вы­сокой температуры не воспламеняются, не тлеют и не обугливаются. К этим материалам относят природные каменные материалы, кирпич, бетон, сталь.

    Трудносгораемые материалы под действием огня с трудновоспла-меняются, тлеют или обугливаются, но после удаления источника огня их горение и тление прекращаются. При­мером таких материалов могут служить древесно-цементный материал фибролит и асфальтовый бетон.

    Сгорае­мые материалы под воздействием огня или высокой тем­пературы воспламеняются и продолжают гореть после удаления источника огня. К этим материалам в первую очередь следует отнести дерево, войлок, толь и рубероид.

    Огнеупорностью называют свойство материала вы­держивать длительное воздействие высокой температуры, не расплавляясь и не деформируясь. По степени огне­упорности материалы делят на огнеупорные, тугоплав­кие и легкоплавкие.

    Огнеупорные материалы способны выдерживать про­должительное воздействие температуры свыше 1580°С. Их применяют для внутренней облицовки промышленных печей (шамотный кирпич). Тугоплавкие материалы вы­держивают температуру от 1350 до 1580°С (гжельский кирпич для кладки печей). Легкоплавкие материалы раз­мягчаются при температуре ниже 1350 °С (обыкновенный глиняный кирпич).

    11. Что такое теплопроводность? Какое значение она имеет при выборе материалов для ограждающих конструкций зданий и сооружений и как она изменяется при увлажнении материала?


    Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

    Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

    Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

    При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

    Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

    Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

    Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

    Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

    Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

    При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

    Наименование материала /Коэффициент теплопроводности Вт/(м·°C)

    Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП , СП , СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

    Еще одна важная задача – это определение величины тепловых потерь через ограждающую конструкцию. Такие вычисления бывают необходимы когда, например, определяется требуемая мощность системы отопления. Как по помещениям — для правильной расстановки обогревательных приборов (радиаторов), так и общая — для выбора оптимальной модели котла.

    Каждая конструкция характеризуется своим уровнем тепловых потерь, которые необходимо определять и для правильного планирования системы отопления, и для совершенствования системы термоизоляции.

    Каждая конструкция характеризуется своим уровнем тепловых потерь, которые необходимо определять и для правильного планирования системы отопления, и для совершенствования системы термоизоляции.

    Дело в том, что это сопротивление описывается еще одной формулой, уже от разницы температур и количества тепла, уходящего через ограждающую конструкцию площадью один квадратный метр.

    R = Δt / q

    Δt — разница температур по обе стороны конструкции, ℃.

    q — удельное количество теряемого тепла, Вт.

    То есть если известна площадь ограждающей конструкции и ее термическое сопротивление (определенное, например, через толщину и коэффициент теплопроводности), если известно, для каких условий производится расчет (например, нормальная температура в помещении и самые сильные морозы, присущие данной местности), то можно спрогнозировать и тепловые потери через эту конструкцию.

    Q = S × Δt/R

    Q — теплопотери через ограждающую конструкцию, Вт.

    S — площадь этой конструкции, м².

    Такие расчеты в помещении проводятся для всех ограждающих конструкций, контактирующих с холодом, и затем определяется суммарные потери, которые должны компенсироваться системой отопления. Или, если эти потери получаются слишком большими – это становится побудительным мотивом к усовершенствованию системы термоизоляции – что-то с ней не так.

    Еще одна ремарка. Это мы говорили о конструкциях, состоящих из нескольких слоев разных строительных и утеплительных материалов. А как быть с окнами? Как для них просчитывается сопротивление теплопередаче?

    Методика здесь – несколько иная, и самостоятельно заниматься такими расчетами вряд ли имеет смысл. Можно воспользоваться таблицей, в которой уже имеются готовые значения сопротивления для различных типов конструкций окон.

    12. Что называется коэффициентом теплопроводности и от чего он зависит? Каково влияние пористости и влажности на величину коэффициента теплопроводности?

    Теплопроводность - это способность материала проводить тепло. Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло.  обозначается обычно греческой буквой λ, и измеряется в Вт/(м×℃).

    Зависимость коэффициента теплопроводности материала от его влажности. Влажность материала в значительной степени определяет его коэффициент теплопроводности. С повышением влажности материала резко повышается и его коэффициент теплопроводности. Повышение коэффициента теплопроводности материала с увеличением его влажности объясняется тем, что вода, находящаяся в порах материала, имеет коэффициент теплопроводности λ =0,5 Вт/(м ·°С), т.е. в 20 раз больший, чем λ воздуха в порах среднего размера. Кроме того, влага в порах материала увеличивает размеры контактных площадок между частицами материала, что также повышает его коэффициент теплопроводности.

    Большая интенсивность возрастания коэффициента теплопроводности материала при малой влажности объясняется тем, что при увлажнении материала сначала заполняются водой более мелкие поры и капилляры, влияние которых на теплопроводность материала больше, чем крупных пор. Еще более резко возрастает коэффициент теплопроводности в том случае, если влажный материал промерзнет, так как лед имеет коэффициент теплопроводности λ =2 Вт/(м ·°С), т. е. в 4 раза больший, чем вода, и в 80 раз больший, чем воздух в порах материала. Однако необходимо учитывать, что замерзание влаги в порах материала происходит при температуре ниже 0°С, причем, чем меньше размер пор, тем при более низких температурах будет замерзать влага во влажном материале. Замерзание влаги в строительных материалах происходит постепенно по мере понижения температуры. Очевидно, какое большое влияние на теплотехнический режим ограждения оказывает его влажностное состояние. О причинах повышения влажности материала в наружных ограждениях, расчете влажностного режима, а также о мерах, обеспечивающих нормальный влажностный режим ограждений, сказано во второй части.

    13Пористость материалов. Определение пористости. Влияние пористости на свойства материалов.

    Пористостью называют степень заполнения общего объема материала порами (отношение объема пор к объему образца). Пористость подразделяется на открытую, закрытую и общую пористости, от величины которых зависят водопоглощение, водо-, газо- и паропроницаемость строительных материалов. С пористостью связаны также такие свойства материалов как прочность, теплопроводность, морозостойкость, звукопроницаемость и др.

    Общей (истинной) пористостью называется весь объем пор в данном объеме материала. Общую пористость Побщ , %, вычисляют по формуле:



    Открытой пористостью материала называется объем тех пор, которые сообщаются с внешней средой. Их объем может быть измерен путем водонасыщения материала. Открытую пористость, Поткр ,% , вычисляют по формуле:



    где  - масса образца соответственно в насыщенном водой и сухом состоянии;V - объем материала; ρв - плотность воды.

    Закрытую пористость Пзакр находят по разности между общей и открытой пористостью:



    Пористость строительных материалов колеблется в пределах от 0 (сталь, стекло) до 90-98% (пенопласт). Пористость материала характеризуют не только с количественной стороны, но и по характеру пор: замкнутые и открытые, мелкие (размеров в сотые и тысячные миллиметра) и крупные (от десятых долей миллиметра до 2-5 мм).

    По характеру пор оценивают способность материала поглощать воду. Так полистирольный пенопласт, пористость которого достигает 95% имеет замкнутые поры и практически не поглощает воду. В то же время керамический кирпич, имеющий пористость в три раза меньшую, благодаря открытому характеру пор (большинство пор представляют собой сообщающиеся капилляры) активно поглощает воду. Открытые поры увеличивают водопоглощение и ухудшают морозостойкость. В звукопоглощающих материалах открытые поры желательны, так как они поглощают звуковую энергию.

    Величина пористости в значительной мере влияет на прочность материала.

    Величина прочности также зависит от размеров пор: она возрастает с их уменьшением. Прочность мелкопористых материалов, а также материалов с закрытой пористостью выше, чем прочность крупнопористых и с открытой пористостью.

    3. Водопоглощение, гигроскопичность, влажность, водоудерживающая способность материалов и методы их определения.

    Отношение материала к статическому или циклическому воздействию воды или пара характеризуется гидрофизическими свойствами.

    При хранении во влажной атмосфере или после дождя пористые строительные материалы впитывают влагу. У плотных материалов вода может адсорбироваться тонким слоем на поверхности. В этом случае состояние материала характеризуют влажностью.

    Влажность В – отношение массы воды, находящейся в данный момент в материале, к массе или – к объему материала в сухом состоянии, %:





    где  - масса влажного и сухого материала соответственно;

    V – объем материала в сухом состоянии.

    Увлажнение приводит к изменению многих свойств материала: повышается масса строительной конструкции, возрастает теплопроводность; под влиянием расклинивающего действия воды уменьшается прочность материала. Для многих строительных материалов влажность нормирована. Например, влажность стеновых материалов – 5-7%, воздушно-сухой древесины – 12-18%.

    Гигроскопичностью называется свойство капиллярно-пористого материала поглощать водяной пар из воздуха.

    Степень гигроскопичности зависит от количества и величины пор в материале, его структуры, температуры и относительной влажности воздуха. Материалы с одинаковой пористостью, но с более мелкими порами обладают более высокой гигроскопичностью, чем крупнопористые. Это отрицательно сказывается на физико-механических характеристиках материалов.

    Например, цемент при хранении поглощает из воздуха водяные пары, теряет активность; древесина при влажном воздухе разбухает, коробится, образует трещины усушки, изменяются форма и размеры деревянных изделий.

    Гигроскопичность строительных материалов различна: некоторые активно притягивают своей поверхностью молекулы воды (гипс, цемент); другие, наоборот отталкивают воду (битумы, стекло, полимеры). Гигроскопичность строительных материалов необходимо учитывать при их сушке, длительном хранении, транспортировании в определенных эксплуатационных условиях.

    За характеристику гигроскопичности принята величина отношения массы поглощенной влаги при относительной влажности воздуха 100% и температуре +200C к массе сухого материала.

    Капиллярное всасывание воды пористым материалом происходит по капиллярным порам, когда часть конструкции соприкасается с водой. Например, грунтовые воды могут подниматься по капиллярам и увлажнять нижнюю часть здания. Это свойство характеризуется высотой поднятия воды в капиллярах материала, количеством поглощенной влаги и интенсивностью всасывания.

    Капиллярами принято называть канальные поры, которые способны впитывать жидкость.

    Средний радиус капилляра, т.е. поры, в которой происходит капиллярный подсос, неодинаков, так как основные параметры этого процесса различаются.

    Водопоглощением W называют свойство материала впитывать и удерживать в себе воду при полном или частичном погружении его в воду. Количество поглощенной материалом воды, отнесенное к его масс в сухом состоянии, называют водопоглощением по массе Wm, а отнесенное к объему – водопоглощением по объему WV, %.



    где  - масса влажного и сухого материала соответственно; V - объем материала; ρв - плотность воды.

    Водопоглощение различных строительных материалов колеблется в очень широких пределах. Так, водопоглощение по массе глиняного обыкновенного кирпича составляет от 8 до 20%, тяжелого бетона – около 3%, гранита – 0,5-0,7%, пористых теплоизоляционных материалов – 100% и более. Водопоглощение по массе высокопористых материалов может быть больше пористости, но водопоглощение по объему никогда не может превышать пористость.

    Водопоглощение используют для оценки структуры материала, привлекая для этой цели коэффициент насыщения пор водой.



    Коэффициент насыщения позволяет оценить структуру материала. Он изменяется от 0 до 1. Уменьшение значения коэффициента насыщения (при той же пористости) свидетельствует о сокращении открытой пористости, что проявляется в повышении морозостойкости.

    При насыщении материала водой существенно изменяются его свойства: повышаются средняя плотность, теплопроводность, происходят структурные изменения в материале, приводящие к снижению прочностных показателей.

    Водоудерживающая способность - способность растворной смеси удерживать избыточную воду. Водоудерживающая способность предохраняет раствор от потери большого количества воды при нанесении его на пористое основание, а также от расслаивания при хранении и перевозке.

      1. 14. Механические свойства строительных материалов (прочность,

    твердость, истираемость): определение, формулы

    Прочность – способность материала сопротивляться разрушению от внутренних напряжений , возникающих под действием внешних сил . Ее оценивают пределом прочности . Единица измерений – кгс / см 2 , МПа . Наиболее часто встречаются : предел прочности при сжатии; прочность на растяжение при изгибе .

    Прочность при сжатии равна отношению разрушающей нагрузки P разр . к площади ее приложения - F . Единица измерений прочности – кгс / см 2 , МПа

    Прочность на растяжение при трехточечном изгибе определяется по фор - муле :

    Прочность на растяжение при чистом изгибе определяется по формуле :

    Упругостью твердого тела называется его свойство деформироваться под нагрузкой и самопроизвольно восстанавливать форму после прекращения внешнего воздействия . Она является обратимой деформацией. Единица измерения – МПа .

    Пластичность –  это свойство твердого тела изменять свою форму и раз - меры под действием внешних сил без нарушения сплошности структуры . После снятия нагрузки образуется остаточная необратимая деформация .

     Для оценки эффективности материала используется формула , связывающая его прочность -  R и относительную среднюю плотность –  pcр . Этот показатель называется удельной прочностью R уд . или коэффициентом конструктивного качества – KKK:

    Хрупкость – это свойство твердого тела разрушаться практически без пластической деформации. Единица измерения – МПа. 

    Твёрдостью твердого тела или материала называется его способность сопротивляться вдавливанию или царапанию. Для минералов применяется шкала Мооса, которая показывает увеличение твердости по мере возрастания номера минерала в этой шкале. Твёрдость древесины, металлов, керамики, бетона и других материалов определяют, вдавливая в них стальной шарик ( метод Бринелля ), алмазную пирамиду ( методы Роквелла и Виккерса ). Твёрдость определяется нагрузкой, отнесенной к площади отпечатка. Единица измерения – МПа. 

    Чем выше твердость, тем ниже истираемость строительных материалов. Истираемость – И оценивается потерей первоначальной массы образца мате - риала , отнесенной к площади поверхности истирания и вычисляется по форму - ле , г / см 2

    Вопрос 15. Что такое упругость пластичность и хрупкость материалов? Укажите, при производстве каких строительных изделий особое значение имеют такие свойства, как пластичность и ползучесть?

    Упругостью твердого тела называют его свойство самопроиз­вольно восстанавливать первоначальную форму и размеры после прекращения действия внешней силы. Упругая деформация полно­стью исчезает после прекращения действия внешней силы, поэтому ее принято называть обратимой.

    Пластичностью твердого тела называют его свойство изменять форму или размеры под действием внешних сил, не разрушаясь, причем после прекращения действия силы тело не может самопро­извольно восстанавливать свои размеры и форму, и в теле остается некоторая остаточная деформация, называемая пластической де­формацией.

    Хрупкость — свойство материала внезапно разрушаться под воздействием нагрузки, без предварительного заметного изменения формы и размеров. Хрупкому материалу, в отличие от пластичного, нельзя придать при прессовании желаемую форму, так как такой материал под нагрузкой дробится на части, рассыпается. Хрупки камни, стекло, чугун и др.

    Предел прочности хрупкого материала при сжатии определяется так же, как и при растяжении. Разрушение образца происходит с образованием трещин по наклонным или продольным плоскостям

    У пластичных материалов прочностные характеристики на растяжение и сжатие сопоставляют по пределу текучести.

    Очень большое влияние на проявление свойств пластичности и хрупкости оказывают скорость нагружения и температура. При быстром нагружении более резко проявляется свойство хрупкости, а при медленном - свойство пластичности. Например, хрупкое стекло способно при длительном воздействии нагрузки при нормальной температуре получать остаточные деформации. Пластичные же материалы, такие как малоуглеродистая сталь, под воздействием резкой ударной нагрузки проявляют хрупкие свойства.

    (16)Технологические и химические свойства строительных материалов.

    Химические свойства характеризуют способность материала вступать в химическое взаимодействие с веществами внешней среды, в которой он находится, или сохранять свой состав и структуру в условиях инертной окружающей среды.

    К химическим свойствам стройматериалов относятся:

    • Адгезия.

    • Растворимость.

    • Способность к кристаллизации.

    • Химическая стойкость.

    Адгезия – это способность к соединению жидких и твердых веществ, которая обусловлена межмолекулярным взаимодействием. Именно благодаря этому качеству возникли такие стройматериалы, как цемент.

    Растворимость – это способность вещества создавать с жидким растворителем особую систему (раствор). Она зависит от нескольких факторов – температуры, давления, химического состава вещества.

    Процесс, при котором из расплавов и растворов образуются кристаллы, называется кристаллизацией. Его широко используют для получения многих каменных материалов искусственного происхождения.

    Очень важна химическая устойчивость того или иного стройматериала. Она показывает, насколько материал способен противостоять разрушительным воздействиям различных агрессивных веществ. Для этого рассчитывается специальный коэффициент (как отношение массы материала после химического воздействия к изначальной массе того же материала). Чем ближе этот коэффициент к единице – тем устойчивее является вещество к агрессивной химической среде.

    Технологические качества

    К технологическим свойствам стройматериалов относятся:

    • Пластичность.

    • Вязкость.

    • Свариваемость.

    • Ковкость и т. д.

    Все эти свойства выражают способность того или иного материала к восприятию или не восприятию определенных технологических операций с целью изменения его формы, размера или же плотности. Они показывают, насколько материал поддается механической обработке, шлифовке, полировке. Это качество материалов определяют в числовых или визуальных показателях по способности их к

    · формуемости (жесткие, пластичные и литые смеси),

    · раскалываемости,

    · шлифуемости,

    · полируемости,

    · гвоздимости (способности удерживать гвозди и принимать их при силовых воздействиях),

    · дробимости и многим другим технологическим свойствам, обусловленным разновидностью механического способа обработки материала.

    Оценка технологических свойств производится условными методами и приборами с указанием названия прибора, температурных условий испытания, скорости нагружения при испытании и др. На практике нередко ограничиваются также визуальными оценками технологических свойств. Однако при массовом производстве и применении материалов (бетонных смесей, асфальтобетонной массы, полимерных композиций и др.) пользуются специальными приборами и методами испытаний с выражением технологических свойств в виде числовых показателей. Таким образом, строительные материалы обладают многообразными свойствами. Но между свойствами каждого материала, особенно при оптимальной структуре, имеется не только различие, но и тесная взаимосвязь.
    1   2   3   4   5   6   7   8   9


    написать администратору сайта