Главная страница
Навигация по странице:

  • Определение полевого транзистора

  • Параметры, характеризующие полевой транзистор

  • Рис. №1. Стоко-затворная ВАХ n-канального транзистора с

  • Проводимость транзистора

  • Структура полевого транзистора

  • Рис. №2. Структуры (а) полевых транзисторов с управляющим p-n-перехода и (б) структура транзистора с изолированным затвором.

  • Рис. №3. Структура полевого транзистора. Канал, расположенный между электродами стоком и истоком сформирован из слабообогащенного полупроводника n-типа.

  • Сфера использования полевых транзисторов

  • силовая лига. Володин 324-КС. Управления мощными полевыми транзисторами. Володин 324кс


    Скачать 50.45 Kb.
    НазваниеУправления мощными полевыми транзисторами. Володин 324кс
    Анкорсиловая лига
    Дата25.01.2022
    Размер50.45 Kb.
    Формат файлаdocx
    Имя файлаВолодин 324-КС.docx
    ТипДокументы
    #341572

    Управления мощными полевыми транзисторами.

    Володин 324-КС.
    Существует два главных основополагающих типа полевых (униполярных, управляемых напряжением) транзисторов, являющихся активными полупроводниковыми элементами, обладающими высокой мощностью – это n-канальные иp-канальные.

    Первые из них применяются более часто и отличаются наибольшим диапазоном токов и напряжений. Кроме этих моделей производятся полевые транзисторы, управляемые сигналом логического уровня, они обладают ограничением по току и защелкой по напряжению.

    Определение полевого транзистора

    Транзистор полевого типа считается полупроводниковым прибором, в конструкции которого регулировка осуществляется измерением проводимости проводящего канала, благодаря использованию поперечного электрического поля.

    Другими словами, он является источником тока, который управляется Uз-и. От параметра напряжения между затвором и истоком зависит проводимость канала. Помимо p–n – канальных транзисторов существует их разновидность с затвором из металла, который изолирован от канала кремниевым диэлектриком. Это МДП-транзисторы (металл – диэлектрик, (окисел) – проводник). Транзисторы с использованием окисела называются МОП-транзисторы.

    Параметры, характеризующие полевой транзистор

    Ширина канала – расстояние между p-n-переходами W.

    Напряжение отсечки - напряжение на затворе при исчезновении каналов.

    Напряжение насыщения – с него начинается формирование пологой части ВАХ.

    Стоко-затворная ВАХ (вольт-амперная характеристика).



    Рис. №1. Стоко-затворная ВАХ n-канального транзистора с 

    Ic= Icmax (I – Uзи / U0)2 , здесь Icmax стока.

    Крутизна определяется по формуле S = dIc / dUзи(мА/В),что является следствием увеличенияU рабочего стока, при этом крутизна полевого транзистора становится меньше.

    Внутреннее сопротивление транзистора (дифференциальное сопротивление) rcсоставляет в пологой части характеристики несколько МОм.

    Лавинный пробой p-n-переходов возможен после повышения напряжения области стока и истока, что считается причиной ограничения применения полевого транзистора относительноUc.

    Коэффициент усиления относительно напряжения µu= srспри уменьшении величины тока стока коэффициент µuповышается.

    Инерционность полевого транзистора обуславливается временем,отводимым на заряд барьерной емкости переходов затвора.

    Полевой транзистор обладает граничной частотой для улучшения своих качественных частотных свойств.

    Проводимость транзистора

    Существует две разновидности проводимости – электронная и дырочная, это означает, что в основе работы лежит использование электронов и дырок. Транзистор с электронной проводимостью относится к n-канальным устройствам, p-канальные транзисторы обладают дырочной проводимостью.

    Отличие полевых униполярных транзисторов от биполярных заключается в наличии значительно высокого значения величины входного сопротивления. Потребление электроэнергии полевыми транзисторами отличается значительной экономией.

    Небольшие габаритные размеры МОП-транзисторах позволяет занимать очень малую площадь в конструкции интегральной схемы, в противоположность биполярным аналогам. Благодаря этому достигается значительно уплотненная компоновка элементов в интегральных схемах. Технология производства интегральной схемы на МОП-транзисторах затрачивает намного меньшее количество операций, чем технология производства ИС с применением биполярного транзистора.

    Структура полевого транзистора

    Основополагающий принцип работы, на котором осуществляется действие полевого транзистора с использованием управляющего p-n-перехода основывается на изменении проводимости канала, которая возможна благодаря изменению поперечного сечения. Сток и исток включают напряжение полярности, при котором главные носители заряда (ими являются электроны в канале n-типа) движутся от истока к стоку. В свою очередь, между затвором и истоком включается отрицательное напряжение, управляющее запиранием p – n–переходом.



    Рис. №2. Структуры (а) полевых транзисторов с управляющим p-n-перехода и (б) структура транзистора с изолированным затвором.

    При большем значении напряжения расширяется запирающий активный слой и канал становится уже. С уменьшением поперечного размера канала происходит увеличение сопротивления и уменьшение величины тока между стоком и истоком. Это действие позволяет управлять протеканием тока. При невысоком значении напряжения затвор  - исток происходит перекрытие канала запирающим слоем, что снижает проводимость канала. Ширина канала варьируется от нулевого значения  до отрицательных величин, иначе говоря, p-n-переходы затвора сдвигаются в обратном направлении, сопротивление увеличивается.

    Напряжение на затворе после исчезновения канала и смыкании  p-n-перехода, определяется, как напряжение отсечки U0– это величина считается одной из основополагающих для всех  разновидностей полевых транзисторов.



    Рис. №3. Структура полевого транзистора. Канал, расположенный между электродами стоком и истоком сформирован из слабообогащенного полупроводника n-типа.

    Сфера использования полевых транзисторов

    Полевой транзистор является устройством, рассчитанным на большую мощность, характерным в конструкции регуляторов, конвертеров, драйверов, электродвигателей, реле и мощных биполярных транзисторов. Они применяются в конструкции зарядных устройств, автоэлектроники, устройствах управления температурным режимом, широкополосных и малошумящих усилителях в схемах зарядочувствительных предусилителей и прочее.  Для полевых транзисторов характерно наличие высокого входного сопротивления. Управление полевым транзистором производится непосредственно от микросхемы, без применения добавочных усиливающих каскадов.


    написать администратору сайта