Главная страница

графы. Теория графов. Давайте на примере


Скачать 256.24 Kb.
НазваниеДавайте на примере
Анкорграфы
Дата04.04.2023
Размер256.24 Kb.
Формат файлаdocx
Имя файлаТеория графов.docx
ТипДокументы
#1036354

Теория графов. Основные понятия и виды графов

Многое из нашей повседневной жизни можно смоделировать при помощи графов. Например, нарисовать для маршрута автобуса схему: отметить точками остановки, а линиями — куда едет автобус. Сейчас расскажем все про теорию графов.

В переводе с греческого граф — «пишу», «описываю». В современном мире граф описывает отношения. И наоборот: любое отношение можно описать в виде графа.

Теория графов — обширный раздел дискретной математики, в котором системно изучают свойства графов.

Теория графов широко применяется в решении экономических и управленческих задач, в программировании, химии, конструировании и изучении электрических цепей, коммуникации, психологии, социологии, лингвистике и в других областях.

Для чего строят графы: чтобы отобразить отношения на множествах. По сути, графы помогают визуально представить всяческие сложные взаимодействия: аэропорты и рейсы между ними, разные отделы в компании, молекулы в веществе.

Давайте на примере.

Пусть множество A = {a1, a2, ... an} — это множество людей, и каждый элемент отображен в виде точки. Множество B = {b1, b2, ... bm} — множество связок (прямых, дуг или отрезков).

На множестве A зададим отношение знакомства между людьми из этого множества. Строим граф из точек и связок. Связки будут связывать пары людей, знакомых между собой.

Число знакомых у одних людей может отличаться от числа знакомых у других людей, некоторые могут вовсе не быть знакомы (такие элементы будут точками, не соединёнными ни с какой другой). Так получился граф:



В данном случае точки — это вершины графа, а связки — рёбра графа.

Теория графов не учитывает конкретную природу множеств A и B. Существует большое количество разных задач, при решении которых можно временно забыть о содержании множеств и их элементов. Эта специфика не отражается на ходе решения задачи.

Например, вопрос в задаче стоит так: можно ли из точки A добраться до точки E, если двигаться только по соединяющим точки линиям. Когда задача решена, мы получаем решение, верное для любого содержания, которое можно смоделировать в виде графа.

Не удивительно, что теория графов — один из самых востребованных инструментов при создании искусственного интеллекта: ведь искусственный интеллект может обсудить с человеком вопросы отношений, географии или музыки, решения различных задач.

Графом называется система объектов произвольной природы (вершин) и связок (ребер), соединяющих некоторые пары этих объектов.

Пусть V — (непустое) множество вершин, элементы v ∈ V — вершины. Граф G = G(V) с множеством вершин V есть некоторое семейство пар вида: e = (a, b), где a, b ∈ V, указывающих, какие вершины остаются соединёнными. Каждая пара e = (a, b) — ребро графа. Множество U — множество ребер e графа. Вершины a и b — концевые точки ребра e.

Широкое применение теории графов в компьютерных науках и информационных технологиях можно объяснить понятием графа как структуры данных. В компьютерных науках и информационных технологиях граф можно описать, как нелинейную структуру данных.

Линейные структуры данных особенны тем, что связывают элементы отношениями по типу «простого соседства». Линейными структурами данных можно назвать массивы, таблицы, списки, очереди, стеки, строки. В нелинейных структурах данных элементы располагаются на различных уровнях иерархии и подразделяются на три вида: исходные, порожденные и подобные.

 Основные понятия теории графов

Граф — это геометрическая фигура, которая состоит из точек и линий, которые их соединяют. Точки называют вершинами графа, а линии — ребрами.



Два ребра называются смежными, если у них есть общая вершина.

Два ребра называются кратными, если они соединяют одну и ту же пару вершин.

Ребро называется петлей, если его концы совпадают.

Степенью вершины называют количество ребер, для которых она является концевой (при этом петли считают дважды).

Вершина называется изолированной, если она не является концом ни для одного ребра.

Вершина называется висячей, если из неё выходит ровно одно ребро.

Граф без кратных ребер и петель называется обыкновенным.

Лемма о рукопожатиях

В любом графе сумма степеней всех вершин равна удвоенному числу ребер.

Из леммы о рукопожатиях следует: в любом графе число вершин нечетной степени — четно.

Пример 1. В классе 30 человек. Может ли быть так, что у 9 из них есть 3 друга в этом классе, у 11 — 4 друга, а у 10 — 5 друзей? Учесть, что дружбы взаимные.

Как рассуждаем:

Если бы это было возможно, то можно было бы нарисовать граф с 30 вершинами, 9 из которых имели бы степень 3, 11 — со степенью 4, 10 — со степенью 5. Однако у такого графа 19 нечетных вершин, что противоречит следствию из леммы о рукопожатиях.

Пример 2. Каждый из 102 учеников одной школы знаком не менее чем с 68 другими. Доказать, что среди них найдутся четверо ребят с одинаковым числом знакомых.

Как рассуждаем:

Сначала предположим противоположное. Тогда для каждого числа от 68 до 101 есть не более трех человек с таким числом знакомых. С другой стороны, у нас есть ровно 34 натуральных числа, начиная с 68 и заканчивая 101, а 102 = 34 * 3.

Это значит, что для каждого числа от 68 до 101 есть ровно три человека, имеющих такое число знакомых. Но тогда количество людей, имеющих нечетное число знакомых, нечетно. Противоречие

Путь и цепь в графе

Путем или цепью в графе называют конечную последовательность вершин, в которой каждая вершина (кроме последней) соединена со следующей в последовательности вершин ребром.

Циклом называют путь, в котором первая и последняя вершины совпадают.

Путь или цикл называют простым, если ребра в нем не повторяются.

Если в графе любые две вершины соединены путем, то такой граф называется связным.

Можно рассмотреть такое подмножество вершин графа, что каждые две вершины этого подмножества соединены путем, а никакая другая вершина не соединена ни с какой вершиной этого подмножества.

Каждое такое подмножество, вместе со всеми ребрами исходного графа, соединяющими вершины этого подмножества, называется компонентой связности.

Один и тот же граф можно нарисовать разными способами. Вот, например, два изображения одного и того же графа, которые различаются кривизной:

Два графа называются изоморфными, если у них поровну вершин. При этом вершины каждого графа можно занумеровать числами так, чтобы вершины первого графа были соединены ребром тогда и только тогда, когда соединены ребром соответствующие занумерованные теми же числами вершины второго графа.

Граф H, множество вершин V’ которого является подмножеством вершин V данного графа G и множество рёбер которого является подмножеством рёбер графа G соединяющими вершины из V’ называется подграфом графа G.

  Источник - Онлайн школа Skysmart: https://skysmart.ru/articles/mathematic/osnovnye-ponyatiya-teorii-grafovВизуализация графовых моделей

Визуализация — это процесс преобразования больших и сложных видов абстрактной информации в интуитивно-понятную визуальную форму. Другими словами, когда мы рисуем то, что нам непонятно — и сразу все встает на свои места.

Графы — и есть помощники в этом деле. Они помогают представить любую информацию, которую можно промоделировать в виде объектов и связей между ними.

Граф можно нарисовать на плоскости или в трехмерном пространстве. Его можно изобразить целиком, частично или иерархически.

Изобразительное соглашение — одно из основных правил, которому должно удовлетворять изображение графа, чтобы быть допустимым. Например, при изображении блок-схемы программы можно использовать соглашение о том, что все вершины должны изображаться прямоугольниками, а дуги — ломаными линиями с вертикальными и горизонтальными звеньями. При этом, конкретный вид соглашения может быть достаточно сложен и включать много деталей.

Виды изобразительных соглашений:

Источник - Онлайн школа Skysmart: https://skysmart.ru/articles/mathematic/osnovnye-ponyatiya-teorii-grafov

Решим следующую задачу. Встретились три подруги: Белова, Чернова и Краснова. На одной из них было чёрное платье, на другой – красное, на третьей – белое. Девочка в белом платье говорит Черновой: «Нам надо поменяться платьями, а то у всех троих цвет платьев не соответствует фамилиям». Кто в какое платье был одет?

На одном из наших занятий было предложено решить эту задачу с помощью таблицы. Давайте решим её с помощью рисунка.

Обозначим фамилии девочек буквами. Пусть напротив буквы Б будет белое платье, напротив буквы Ч – чёрное, напротив буквы К – красное.



Соединим пунктирной линией букву Б и белое платье. Это означает, что Белова не в белом платье. Также соединим пунктирными линиями букву Ч и чёрное платье, букву К и красное платье. Это означает, что Чернова не в чёрном платье, а Краснова не в красном платье.



В условии задачи говорится, что девочка в белом платье говорит Черновой: «Нам надо поменяться платьями, а то у всех троих цвет платьев не соответствует фамилиям». Получается, что Чернова одета не в белое платье. Поэтому соединим букву Ч с белым платьем пунктирной линией.



Теперь, внимательно посмотрев на рисунок, становится понятно, что ни Белова, ни Чернова не одеты в белое платье. Значит, в белое платье одета Краснова. Поэтому соединим букву К и белое платье сплошной линией.



Так как на Чернова была одета не в белое платье, а также на ней не могло быть чёрного платья, то, следовательно, она была в красном платье. Соединим сплошной линией букву Ч и красное платье.



Мы выяснили, что Краснова была в белом платье, а Чернова была в красном. А значит, Белова была в чёрном платье. Соединим букву Б и чёрное платье сплошной линией.



Ответ на вопрос задачи будет таким: Белова была одета в чёрное платье, Чернова – в красное платье, Краснова – в белое платье.


написать администратору сайта