Дозирование
Скачать 5.11 Mb.
|
. 68. Совершенствование метода автоматизированного определения углов обрушения сыпучих материалов / СВ. Першина, А.И. Шершукова, А.Б. Зобин, А.Г. Ткачев, В.Ф. Першин // Сборник научных трудов по материалам международной научно-практической конференции "Современные проблемы и пути их решения в науке, транспорте, производстве и образовании'2007". – Одесса, 2007. – Т. 3 : Технические науки. – С. 92 – 94. 69. Автоматизированное определение углов трения покоя и движения сыпучих материалов / А.И. Шершукова [и др.] // Сборник научных трудов по материалам международной научно-практической конференции "Современные проблемы и пути их решения в науке, транспорте, производстве и образовании'2007". – Одесса, 2007. – Т. 3 : Технические науки. – С. 94 – 97. Ã ë à â à 2 ÎÁÙÈÅ ÏÐÈÍÖÈÏÛ È ÇÀÊÎÍÎÌÅÐÍÎÑÒÈ ÂÅÑÎÂÎÃÎ ÄÎÇÈÐÎÂÀÍÈß ÇÅÐÍÈÑÒÛÕ ÌÀÒÅÐÈÀËÎÂ 2.1. ОБЩИЕ СВЕДЕНИЯ Дозирование зернистых материалов – это механический процесс, т.е. процесс, скорость которого определяется законами физики твердого тела [1]. Дозатор – устройство для автоматического отмеривания (дозирования) заданных массы или объема жидких или сыпучих материалов. Поскольку любой технологический процесс базируется на определенной массе исходного сырья, учете выработанной продукции, обеспечении заданного количества продукта по массе (или поддержание заданного расхода), то весы и дозаторы находят самое широкое применение в различных отраслях промышленности. По структуре рабочего цикла дозирование (взвешивание) может быть непрерывным или дискретным (порционным), а по принципу действия – объемным или весовым. Для объемного дискретного дозирования (рис. 2.1, а) характерно периодическое повторение цикла выпуска и набора дозы (порции) продукта объемом V. Дискретное весовое дозирование (рис. 2.1, в) основано на отмеривании дозы массой М. При объемном непрерывном дозировании (рис. 2.1, б) формируется поток с массовым расходом. При непрерывном весовом дозировании (рис. 2.1, г) поток материала, выходящий из питателя 4, непрерывно взвешивается. В зависимости от результатов взвешивания автоматически с помощью регулятора 8 и задвижки 2 с исполнительным механизмом корректируется производительность питателя. При электронном дискретном взвешивании (рис. 2.1, д) ковш с взвешиваемым материалом закрепляется на чувствительном элементе (балке), на котором наклеивают преобразователи (чаще всего тензодатчики 10). Для повышения чувствительности тензодатчики, как правило, соединяются по мостовой схеме (рис. 2.1, е). Сигнал о рассогласовании "моста" подается на прибор 11, по показаниям которого можно судить о массе продукта, находящейся в ковше. Если соединить датчики с каким- либо воспринимающим вес элементом 3 движущегося потока, то измерение величины производительности можно осуществлять непрерывно (рис. 2.1, ж). У автоматических весовых дозаторов дискретного действия для фасовки наименьшие пределы взвешивания устанавливаются техническими условиями, а автоматических весов и дозаторов непрерывного действия в зависимости от класса точности должны составлять: для классов 0,5; 1; 1,5 – 50 %; для классов 2; 2,5; 4 – 30 % от наибольшего предела производительности (табл. 2.1). Под точностью понимают свойство дозаторов давать показание (осуществлять дозирование), близкое к истинной массе (производительности). Количественно точность оценивается допускаемой погрешностью. Рис. 2.1. Схемы дозирования зернистых материалов: а – дискретное объемное; б – непрерывное объемное; в – дискретное весовое; г – непрерывное весовое; д – электронное; е – мостовая схема соединения тензодатчиков; 1 – бункер с материалом; 2 – задвижка; 3 – мерная камера; 4 – объемный дозатор непрерывного действия; 5 – ковш; 6 – весовой механизм; 7 – гиредержатель; 8 – автоматический регулятор производительности; 9 – чувствительный элемент (балка); 10 – тензодатчик; 11 – показывающий прибор; 12 – источник питания; 13 – лента конвейера; 14 – элемент, воспринимающий вес движущегося потока (ролик) 2.1. Наибольшие пределы взвешивания весов и дозаторов непрерывного действия Единица измерения Наибольшие пределы производительности г/ч 100 125 160 200 250 320 400 500 630 800 кг/ч 1 10 100 1,25 12,5 125 1,6 16 160 2 20 200 2,5 25 250 3,2 32 320 4 40 400 5 50 500 6,3 63 630 8 80 800 т/ч 1 10 100 1000 10 000 1,25 12,5 125 1250 1,6 16 160 1600 2 20 200 2000 2,5 25 250 2500 3,2 32 320 3200 4 40 400 4000 5 50 500 5000 6,3 63 630 6300 8 80 800 8000 Классы точности технологических дозаторов определяются в зависимости от типа: у автоматических весовых дозаторов дискретного действия для дозирования (фасовки) в интервале от наименьшего до половины наибольшего предела дозирования – по относительной допускаемой погрешности каждой дозы в процентах от половины наибольшего предела дозирования; в интервале от половины до наибольшего предела дозирования – по относительной допускаемой погрешности в процентах от номинального значения массы дозы (кроме того, погрешность среднего арифметического значения 10 доз не должна превышать погрешности отдельной i-й дозы, деленной на определенный коэффициент); у дозаторов непрерывного действия в установленных пределах производительности – по относительной допускаемой погрешности в процентах от наибольшего предела производительности. 2.2. ОБОБЩЕННАЯ ФУНКЦИОНАЛЬНАЯ СХЕМА ВЕСОВЫХ ДОЗАТОРОВ И ЕЕ ЭЛЕМЕНТЫ Анализ конструкций весовых дозаторов показал, что с точки зрения функционального назначения, можно выделить следующие основные элементы (рис. 2.2): питатель 1; измерительная система 2; управляющая система 3. Питатель объемного принципа действия формирует отдельную порцию или непрерывный поток из дозируемого материала с определенной объемной производительностью. Измерительная система 2 фиксирует силовое воздействие со стороны отдельной порции или непрерывного потока, преобразует эту информацию, регистрирует и передает полученную информацию на управляющую систему 3. Рис. 2.2. Функциональная схема весового дозатора 1 2 3 Управляющая система обрабатывает информацию, преобразует ее в весовую производительность и сравнивает с заданным значением производительности. При необходимости подается управляющий сигнал на питатель 1 о прекращении работы или об изменении его объемной производительности. Рассмотрим более подробно основные составляющие весовых дозаторов. 2.2.1. ПИТАТЕЛИ Для формирования непрерывного потока используются различные конструкции объемных питателей. На рис. 2.3 даны схемы некоторых типов питателей объемного принципа действия. Клапанный питатель (рис. 2.3, а) представляет собой питатель со свободным падением материала. Материал высыпается из выгрузочного отверстия под действием собственного веса и под давлением столба материала в бункер. Поперечное сечение отверстия может также постоянно регулироваться запорным клапаном с использованием предкрылка определенными ступенями (грубый/тонкий поток). Исходя из этого, используются клапанные питатели, у которых посредством регулируемого дроссельного клапана можно также редуцировать грубый поток материала. Для уменьшения высоты наполнения бункера можно изготовить выгрузочное отверстие в виде решетки или сита. Далее существует возможность уменьшить влияние высоты наполнения на точность дозировки посредством ступенчатых вкладышей. Клапанный питатель подходит для свободно текущих дозируемых продуктов, таких как гранулированные материалы, зерно, бобовые, ограниченно также для соли и сахара. Основное применение клапанные дозаторы находят при загрузке последовательно соединенных дозирующих механизмов, которые, в свою очередь, могут работать в режиме дозировки по объему или по весу. Рис. 2.3. Схемы питателей для непрерывной подачи зернистых материалов Питатели с заслонкой или шибером (рис. 2.3, б) представляют другой вид конструкции дозатора со свободным падением материала, с такими же характеристиками и областями использования, как у клапанных дозаторов. В этих конструкциях возможны более плавное регулирование производительности, механизация и автоматизация перемещения шибера. Питатели с валом или секторные (рис. 2.3, в), при больших размерах камер называемые также шлюзовыми барабанными питателями, характеризуются более высокой точностью дозировки. Посредством изменения формы и размера ячеек барабана можно приспосабливать этот тип дозатора к различным материалам. Питатели с валом, прежде всего, находят применение в сочетании с клапанными питателями грубого потока. Они оказываются малопригодными для дозирования материалов, чувствительных к смятию или ломки. Варианты 1 2 6 1 2 3 1 2 1 3 2 1 2 3 а) б) в) г) 1 2 3 д) е) питателей с валом и методы их расчета достаточно подробно описаны в технической и научной литературе [2 – 5]. Шнековые питатели (рис. 2.3, г) изготавливаются во множестве вариантов и отличаются большой приспособляемостью к различным задачам дозировки. Производительность определяется диаметром и числом оборотов шнека, посредством шага шнека также можно влиять на производительность и точность дозирования. Комбинация этих параметров должна осуществляться с учетом характеристик текучести дозируемого материала, хотя с увеличением диаметра шнека точность дозировки падает. Питатели с двумя шнеками и раздельными приводами могут сочетать высокую производительность с высокой точностью. Шнековые питатели пригодны, прежде всего, для неклейких, порошкообразных материалов. Для очень клейких продуктов разработаны специальные модели дозаторов и среди них такие, как спиральные шнеки или друг друга "пронизывающие", самоочищающиеся двойные шнеки. Улучшение степени наполнения шнеков при дозировании сводообразующих продуктов может достигаться посредством разрыхляющих валов в бункере. Для уплотнения воздухосодержащих загружаемых продуктов разработаны шнековые упаковщики и методики их расчета [6 – 8]. Для дозирования материалов, чувствительных к смятию и ломких, шнеки пригодны только в ограниченной степени, В ленточных питателях (рис. 2.3, д) материал выгружается из бункера, у которого на передней стенке установлена заслонка, регулирующая поперечное сечение потока. Кроме этого, производительность может изменяться в зависимости от скорости ленты. Ленточные питатели не имеют ярко выраженной границы выгрузки. Материал проходит через изгиб ленты на барабане, в результате чего на точность дозирования сильно влияют характеристики текучести. Точность часто является недостаточной при непрерывной подаче крупнокусковых, пластичных или волокнистых материалов. Ленточные питатели пригодны практически для всех зернистых материалов. Особо следует отметить, что с помощью питателей этого типа можно хорошо дозировать материалы, чувствительные к механическим воздействиям. В вибрационных питателях (рис. 2.3, е) на материал дополнительно воздействуют вибрацией. Под воздействием вибрации существенно уменьшается коэффициент внутреннего трения, что способствует лучшему истеканию материала из бункера. Производительность регулируется амплитудой и частотой вибрации, а также размерами и конструктивными особенностями вибрирующего элемента. Незначительность механических нагрузок на материал делают вибрационные питатели пригодными для организации непрерывной подачи практически всех зернистых материалов. Точность дозировки, правда, в пределах сравнительно небольшой области регулировки массового потока является удовлетворительной почти для всех продуктов. 2.2.2. ИЗМЕРИТЕЛЬНАЯ СИСТЕМА Функциональная внутренняя структура измерительной системы весового дозатора [9] показана на рис. 2.4. Информация, которую мы хотим получить от измеряемого объекта, не всегда имеет форму активной информации. В тех случаях, когда измеряемая величина не является активной, необходимо воспользоваться источником возбуждения, который будет оказывать воздействие на измеряемый объект. Тогда отклик объекта (вместе с самим воздействием) будет содержать желаемую информацию. Если же измеряемый объект сам порождает сигнал, уже содержащий желаемую информацию, то во внешнем возбуждении нет надобности. Часто параметр или переменная величина, подлежащая измерению, имеет электрическую природу. Когда нужно измерить неэлектрические параметры или переменные, такие как жесткость, тепловое сопротивление, смещение и т.д., чаще всего применяется того или иного рода датчик или преобразователь, и система в целом не остается чисто механической или тепловой измерительной системой. В датчике входной параметр или переменная трансформируются в электрический выходной сигнал, который несет информацию об исходной измеряемой величине. Большим достоинством такого преобразования в электрический сигнал является тот факт, что оно дает возможность в дальнейшем обрабатывать информацию с помощью электроники, а это совсем не дорогой и гибкий способ обработки. Например, в таком виде информацию легко передавать на большие расстояния при минимальном мешающем действии окружающей среды. Особенно полезно это для измерении в недоступных местах или в агрессивной среде, а также при измерении большого числа объектов, которые разнесены далеко друг от друга (например, измерения производительности нескольких дозаторов в пищевой или химической промышленности). Рис. 2.4. Обобщенная внутренняя структура измерительной системы Иногда передача информации осуществляется другими, неэлектрическими средствами. В некоторых отраслях обрабатывающей промышленности, где имеют дело с воспламеняющимися веществами, для передачи информации применяют пневматическую телеметрию. Данные измерений в этом случае передаются по тонким трубкам посредством давления газа. Как правило, электрический сигнал на выходе датчика не пригоден для того, чтобы быть непосредственно представленным наблюдателю. Часто бывает необходимо сначала подвергнуть его обработке того или иного вида (усилению, фильтрации, коррекции нелинейности датчика и др.). После такой обработки сигнал может быть представлен оператору или механическому наблюдателю (автомату). Выходной сигнал можно также временно сохранить в памяти и воспользоваться им позднее. В этом случае говорят о регистрации результата измерения. Не во всякой измерительной системе имеются все шесть подсистем, указанных на рис. 2.4. Подсистемы не обязательно должны следовать в том порядке, как указано в примере. Часто, например, обработка сигнала производится до его передачи. Сигнал, который поступает с датчика – это энергетическое физическое явление, несущее информацию. Предполагается, что такой сигнал относится к соответствующей области физики или к ее определенному разделу. Например, механический, тепловой, электрический и магнитный сигналы принадлежат каждый к своей собственной соответственной физической области. Чтобы обеспечить перенос из одной физической области в другую, должна существовать возможность отображать сигналы из одной физической области на сигналы из другой области. Такое отображение осуществляют "преобразователи", которые способны энергетическое физическое явление одного рода (из одной области) преобразовывать в явление другого рода (в другой области). При преобразовании должна сохраняться информация, содержащаяся в исходном энергетическом явлении. Такие сохраняющие информацию энергетические преобразователи называют измерительными датчиками. Кроме отображения сигналов, принадлежащих различным областям, друг на друга, необходимо также иметь возможность отображать друг на друга сигналы из одной и той же области. В этом случае энергетическое явление преобразуется в подобное ему энергетическое явление с сохранением соответствующей информации, содержащейся в исходном явлении. Может понадобиться увеличить мощность явления (усиление мощности) или опустить какую-то ненужную информацию (фильтрация). Происходящие в веществе физические эффекты, используемые для отображения сигналов из различных областей, называют эффектами переноса, тогда как для отображения сигналов в пределах одной области используются происходящие в веществе эффекты, называемые прямыми. Вот примеры эффектов переноса: из электрической области в тепловую – эффект Пельтье; из тепловой области в электрическую – эффект Зеебека; из магнитной области в электрическую – эффект Холла. Примеры прямых эффектов, происходящих в веществе: в электрической области – электрическое сопротивление; в механической области – упругость. С точки зрения преобразования энергии различают два типа датчиков: пассивные и активные. Пассивными являются такие датчики, которые функционируют без потребления энергии от вспомогательного источника (см. рис. 2.5, а). Средняя мощность сигнала на выходе Р о является частью средней мощности Р i , отдаваемой измеряемым объектом. Однако физически реализуемое преобразование энергии всегда сопровождается потерями (мощности P l ), поэтому: l i P P P + = o . (2.1) возбуждение регистрация преобразование избираемый объект обработка индикация управление измерительная система Возможно, в принципе, накопление энергии в датчике на короткое время. Следовательно, приведенное выше соотношение справедливо только для значений, являющихся результатом усреднения на протяженном интервале времени. Когда измеряемый объект нельзя сильно нагружать, т.е. он может отдавать лишь очень малую входную мощность, существенным становится коэффициент полезного действия (КПД) η пассивного датчика: i l i l i i P P P P P P P − = − = = η 1 o . (2.2) Когда на входе имеется большая мощность, КПД процесса преобразования не является определяющим параметром. Все механические вольтметры, амперметры и ваттметры являются примерами этого класса пассивных датчиков. В них электрическая энергия преобразуется в механическую энергию в форме потенциальной энергии сжатой пружины подвижной системы измерительного прибора. а) б) |