Главная страница
Навигация по странице:

  • РЕФЕРАТ на тему: Эффект Черенкова

  • Эффект Черенкова. Эффект Вавилова Черенкова


    Скачать 97.39 Kb.
    НазваниеЭффект Вавилова Черенкова
    Дата12.12.2018
    Размер97.39 Kb.
    Формат файлаdocx
    Имя файлаЭффект Черенкова.docx
    ТипДокументы
    #60025

    Эффект Вавилова — Черенкова

    Свечение, вызываемое в прозрачной среде заряженной частицей движущейся со скоростью, превышающей фазовую скорость распространения света в этой среде.

    Детекторы, регистрирующие черенковское излучение, широко используется в физике высоких энергий для регистрации релятивистских частиц и определения их скоростей и направлений движения. Если известна масса порождающих черенковское излучение частиц, то сразу определяется их кинетическая энергия.

    История открытия

    В 1934 году Павел Черенков, выполняя в лаборатории С. И. Вавилова исследования люминесценции жидкостей под воздействием гамма-излучения, обнаружил слабое голубое излучение неизвестной природы. Позже было установлено, что это свечение вызывается электронами, движущимися со скоростями, превышающими фазовую скорость света в среде. Быстрые электроны выбиваются из электронных оболочек атомов среды гамма-излучением.

    Уже первые эксперименты Черенкова, предпринятые по инициативе С. И. Вавилова, выявили ряд необъяснимых особенностей излучения: свечение наблюдается у всех прозрачных жидкостей, причём яркость мало зависит от их химического состава и химической природы, излучение поляризовано с преимущественным направлением электрического вектора вдоль направления распространения частиц, при этом в отличие от люминесценции не наблюдается ни температурного, ни примесного тушения. На основании этих данных Вавиловым было сделано основополагающее утверждение, что обнаруженное явление — не является люминесценций, а свет излучают движущиеся в ней быстрые электроны.

    Черенков изучал голубой свет, появлявшийся в тот момент, когда радиоактивные объекты (содержащие атомы, чьё ядро распадается на другие ядра, выплёвывая частицы высокой энергии, среди которых встречаются электроны и позитроны) размещались рядом с водой и другими прозрачными материалами. Сейчас мы знаем, что любая электрически заряженная частица, такая, как электрон, движущаяся с достаточно высокой энергией через воду, воздух или другую прозрачную среду, будет испускать голубой свет. Свет этот движется от частицы под определённым углом к направлению её движения.

    Механизм возникновения и направление распространения излучения

    Теория относительности гласит: ни одно материальное тело, включая быстрые элементарные частицы с высокими энергиями, не может двигаться со скоростью, превышающей скорость света в вакууме.

    Но в оптически прозрачных средах скорость быстрых заряженных частиц может быть больше фазовой скорости света в этой среде. Действительно, фазовая скорость света в среде равна скорости света в вакууме C, делённой на показатель преломления среды n :. При этом вода, например, имеет показатель преломления 1,33, а показатели преломления различных марок оптических стёкол лежат в пределах от 1,43 до 2,1. Соответственно, фазовая скорость света в таких средах составляет 50—75 % от скорости света в вакууме. Поэтому оказывается, что релятивистские частицы, скорость которых близка к скорости света в вакууме, движутся в таких средах со скоростью, превосходящей фазовую скорость света.

    Возникновение излучения Черенкова аналогично возникновению ударной волны в виде конуса Маха от тела, движущегося со сверхзвуковой скоростью в газе или жидкости, например, ударная конусообразная волна в воздухе от сверхзвукового самолёта или пули.

    Как поняли Франк и Тамм, это фотонный удар, аналогичный звуковому удару, происходящему, когда сверхзвуковой летательный аппарат движется быстрее скорости звука, или волнению, которое создаёт судно, идущее по воде. Свет в прозрачной среде будет двигаться со скоростью, отличающейся от скорости света в вакууме из-за взаимодействия между светом и заряженными частицами (электронами и ядрами атомов), составляющими эту среду. К примеру, в воде свет перемещается примерно на 25% медленнее, чем в вакууме! Поэтому электрону высокой энергии легче перемещаться быстрее, чем свет перемещается в воде, и при этом не превышать скорости света в вакууме. Если такая частица идёт через воду, она создаёт электромагнитную взрывную волну, похожую на взрывную волну, создаваемую сверхзвуковым самолётом в плотном воздухе. Эта волна исходит от частицы, так же, как звуковая волна исходит от самолёта, и переносит в себе энергию во многих формах (длинах волн) электромагнитного излучения, включая и видимый свет. На фиолетовом конце радуги энергии создаётся больше, чем на красном, поэтому свет для наших глаз и мозга выглядит в основном голубым.

    Пояснить это явление можно по аналогии с волнами Гюйгенса, из каждой точки вдоль траектории движения быстрой частицы исходит сферический фронт световой волны, распространяющийся по среде со скоростью света в этой среде, причём каждая следующая сферическая волна испускается из следующей точки на пути движения частицы. Если частица движется быстрее скорости распространения света в среде, то она обгоняет световые волны. Совокупность касательных прямых к сферическим волновым фронтам, проведённых из точки проходящей через частицу образуют круговой конус — волновой фронт излучения Черенкова.

    Угол при вершине конуса зависит от скорости частицы и от скорости света в среде:



    Таким образом, угол раскрытия конуса излучения Черенкова позволяет определить скорость частицы. Угол раскрытия измеряют с помощью какой-либо оптической системы, на этом принципе работают черенковские детекторы релятивистских частиц.





    Интересные следствия

    Распространённое представление о том, что на больших глубинах в океане царит полный мрак, так как свет с поверхности туда не доходит, является ошибочным. Как следствие распада радиоактивных изотопов в океанской воде, в частности, калия-40, даже на больших глубинах вода слабо светится из-за эффекта Вавилова — Черенкова. Существуют гипотезы, что большие глаза нужны глубоководным созданиям затем, чтобы видеть при столь слабом освещении.

    На образование энергии излучения, испускаемого частицей, затрачивается её кинетическая энергия, соответственно, в процессе излучения скорость частицы уменьшается.

    Федеральное государственное образовательное учреждение высшего образования

    «Казанский национальный исследовательский технологический университет»

    РЕФЕРАТ

    на тему:

    Эффект Черенкова

    Выполнил:

    студент группы 4371-51

    Никитина Анисия Александровна

    Казань, 2018


    написать администратору сайта