Главная страница
Навигация по странице:

  • Самки Самцы

  • Экология учебник для вузов - А.С. Степановских. Экология


    Скачать 21.33 Mb.
    НазваниеЭкология
    АнкорЭкология учебник для вузов - А.С. Степановских.doc
    Дата28.01.2017
    Размер21.33 Mb.
    Формат файлаdoc
    Имя файлаЭкология учебник для вузов - А.С. Степановских.doc
    ТипДокументы
    #65
    КатегорияЭкология
    страница32 из 104
    1   ...   28   29   30   31   32   33   34   35   ...   104

    9.6. Половой состав популяции



    Генетический механизм определения пола обеспечивает расщепление потомства по полу в отношении 1:1, так называемое соотношение полов. Но из этого не следует, что такое же соотношение характерно для популяции в целом. Сцепленные с полом признаки часто определяют значительные различия в физиологии, экологии и поведении самок и самцов. В силу разной жизнеспособности мужского и женского организмов это первичное соотношение нередко отличается от вторичного и особенно от третичного — характерного для взрослых особей. Так, у человека вторичное соотношение полов составляет 100 девочек на 106 мальчиков, к 16—18 годам это соотношение из-за повышенной мужской смертности выравнивается и к 50 годам составляет 85 мужчин на 100 женщин, а к 80 годам — 50 мужчин на 100 женщин (см. рис. 9.7).

    Экологическое и поведенческое различия между особями мужского пола могут быть сильно выражены. Так, самцы комаров семейства Culicidae в отличие от кровососущих самок в има-гинальный период или не питаются совсем, или ограничиваются слизыванием росы, или потребляют нектар растений. Если даже образ жизни самцов и самок сходен, то они различаются по многим физиологическим признакам: темпам роста, срокам полового созревания, устойчивости к изменениям температуры, голоданию и т. д.

    Вторичное и третичное соотношение полов у животных и растений может колебаться и в очень незначительных пределах у разных видов. Существуют популяции, например у некоторых мух, состоящие исключительно из самок. Из самок состоят популяции ряда партеногенетических видов насекомых и ряда других животных. При этом доля партеногенетических самок в разных популяциях может значительно варьировать. У некоторых видов пол изначально определяется не генетическими, а экологическими факторами. У корнеплода Arisaemajaponica решающим фактором во вторичном определении пола является масса клубней: самые крупные и хорошо развитые клубни дают растения с женскими цветами, а мелкие и слабые — с мужскими цветами.

    Наглядно прослеживается влияние условий среды на половую структуру популяций у видов с чередованием половых и партеногенетических поколений. При оптимальной температуре дафнии (Daphnia magna) размножаются партеногенетически, а при повышенной или пониженной температуре в популяциях появляются самцы. Появление обоеполого поколения у тли может происходить из-за длины светового дня, температуры, увеличения плотности населения и других факторов.

    9.7. Генетические процессы в популяциях



    Начало генетического изучения популяций положила работа В. Иогансена «О наследовании в популяциях и чистых линиях», опубликованная в 1903 г., где экспериментальным путем была доказана эффективность действия отбора в гетерогенной смеси генотипов (все природные популяции). Была наглядно продемонстрирована неэффективность действия отбора в чистых линиях генотипически однородном (гомозиготном) потомстве, исходно получаемом от одной самоопыляющейся или самооплодотворяющейся особи.

    В настоящее время известно, что все природные популяции гетерогенны и насыщены мутациями. Генетическая гетерогенность любой популяции при отсутствии давления внешних факторов должна быть неизменной, находиться в определенном равновесии. А. В. Яблоков, А. Г. Юсупов (1998) приводят расчеты на двух примерах, впервые сделанные Г. Харди (1908).

    Предположим, что в популяции число форм гомозиготных по разным аллелям одного гена (АА и аа) одинаково. Если особи — носители данных аллелей совершенно свободно скрещиваются друг с другом, то возможны следующие комбинации:


    Самки



    Самцы

    0,5А

    0,5а

    0,5А

    0,5а

    0.25АА

    0,25Аа

    0,25Аа

    0,25аа


    Цифры показывают, что в данном поколении в популяции будут возникать гомозиготы АА и аа с частотой по 0,25, а гетерозиготы Аа — с частотой 0,50. Это же соотношение сохранится и в следующем поколении: частота гамет с рецессивным аллелем а составит 0,5 (0,25 от гомозигот аа+0,25 от гетеро-зигот Аа), также как и частота гамет с доминантным аллелем А (0,25 от гомозигот АА+0,25 от гетерозигот Аа). Это же соотношение сохранится во всех следующих поколениях, если не будет нарушено каким-либо внешним давлением.

    Определенно, в подавляющем большинстве случаев в популяции встречается разное число гомозигот АА и аа. Разберем пример, когда частота аллелей данного гена в популяции будет 0,7 а, 0,ЗА:


    Самки



    Самцы

    0,ЗА

    0,7а

    0,ЗА

    0,7а

    0.09АА

    0,21Аа

    0,21Аа

    0,49аа


    Следовательно, в потомстве на 100 зигот будет 9 гомозигот АА, 49 гомозигот аа и 42 гетерозиготы Аа. В следующем поколении гаметы с аллелем А будут возникать с частотой 0,3 (0,09 от гомозигот АА+0,21 от гетерозигот Аа), а гаметы с аллелем а будут возникать опять-таки с частотой 0,7 (0,49 от гомозигот аа+0,21 от гетерозигот Аа). Как и в первом примере, это соотношение сохранится в каждой последующей генерации.

    Если частоту встречаемости одного аллеля данного гена определить как q, то частота альтернативного аллеля того же гена может быть определена как 1—q. В потомстве свободно скрещивающихся особей должны быть следующие отношения таких аллелей:


    Самки



    Самцы

    q

    (1-q)

    q

    (1 - q)

    qq

    q (1 - q)

    q(l - q)

    (1 - q)(1 - q)

    При суммировании это дает:

    или

    Эта формула носит название формулы Харди—Вайнберга и позволяет рассчитывать относительную частоту генотипов и феноти пов в популяции. Так, предположим, что в популяции каких-либо жуков обнаружены красные формы с частотой 25% (или 0,25) и черные с частотой 75% (или 0,75); черный цвет определяется доминантным аллелем А, а красный — рецессивным аллелем а. При этом частота встречаемости генотипов аа составит (1 —q)2 = 0,2 5, а частота встречаемости аллеля а составит Согласно той же формуле частота доминантного аллеля А составит 1—0,5 = 0,5, а частота гомозиготных доминантных генотипов АА составит в популяции q2 = 0,52 = 0,25.

    Итак, при анализе природных совокупностей особей (популяций) необходимо различать понятия: частота гена (количественное соотношение аллелей одного какого-либо локуса), частота генотипа (количественное соотношение разных генотипов) и частота фенотипа (количественное соотношение разных фенотипов).

    Формула Харди—Вайнберга пригодна лишь для предельно упрощенной ситуации, для идеальной бесконечно большой популяции (иногда ее называют «менделевской») и при отсутствии давления каких-либо факторов. Кроме того, как известно, на частоту фенотипов оказывает влияние не только частота данного аллеля, но и такие его свойства, как доминантность, рецессивность, пенетрантность и экспрессивность. Таким образом, при анализе природных популяций данная формула применима лишь с большими оговорками.

    Существование двух (или более) генетически различных форм в популяции в состоянии длительного равновесия в таких соотношениях, что частоту даже наиболее редкой формы нельзя объяснить только повторными мутациями, называется полиморфизмом. В качестве примера полиморфизма можно привести три формы цветков у примулы (Primula vulgaris), рис. 9.8.



    Рис. 9.8. Три формы цветков у примулы (Primula vulgaris),

    из Ф. Шеппарда, 1970
    В природных популяциях примулы (Primulavulgaris) всегда есть особи с длинным пестиком и короткими пыльниками (А), длинными пыльниками и коротким пестиком (Б) и одинаковыми по длине пыльниками и пестиком (В). Самоопыление возможно только у цветов типа В. Гетеростилия способствует перекрестному оплодотворению.

    Полиморфизм по механизму возникновения и поддержания разделяется на две большие группы: гетерозиготный и адаптационный.

    Гетерозиготный полиморфизм устанавливается в результате давления на популяцию естественного отбора, положительно отбирающего гетерозигот.

    Адаптационный полиморфизм — это две или несколько генетически различных форм внутри популяции, подвергающихся положительному отбору в разных экологических условиях.

    В качестве примера можно привести адаптационный полиморфизм в популяции двухточечной тлевой (божьей) коровки Adalia bipunctata (рис. 9.9).


    Рис. 9.9. Адаптивный полиморфизм в популяции тлевых

    (божьих) коровок Adalia bipunctata:

    I — процентное содержание черной и красной форм при весеннем (В) и осеннем (О) сборах; II — частота доминантного гена А (черная окраска) в популяциях весной и осенью каждого года (в%) (по Н. В. Тимофееву-Ресовскому и Ю. М. Свирежеву, 1965)
    На протяжении 10 лет в изучении популяции тлевой коровки осенью — при уходе на зимовку — черных форм было от 50 до 70%, а весной — при выходе из зимовки — от 30 до 45%. Красных форм осенью было меньше 50%, а весной — больше. Красные формы, как было установлено, лучше переносят в зимний период холод, а черные — интенсивнее размножаются летом. Отсюда отбор направлен на сохранение большего числа красных жуков зимой и черных — летом. Разнонаправленное давление отбора в отдельные периоды жизни популяции способствует выработке устойчивого адаптационного полиморфизма.

    Положение о генетическом единстве популяции является одним из наиболее важных выводов популяционной генетики: любая популяция представляет сложную генетическую систему, находящуюся в динамическом равновесии.
    1   ...   28   29   30   31   32   33   34   35   ...   104


    написать администратору сайта