Физика Механика шпаргалка. ЭКЗАМЕН ПО ФИЗИКЕ. Экзамен по физике
Скачать 257.33 Kb.
|
Свободным падением тел называют падение тел на Землю в отсутствие сопротивления воздуха. В отсутствие сопротивления воздуха все тела падают на Землю равноускоренно, и что в данной точке Земли ускорение всех тел при падении одно и то же. Ускорение, с которым падают на Землю тела, называется ускорением свободного падения. Свободное падение является прямолинейным движением с постоянным ускорением. υ = –gt. Скорость отрицательна, так как вектор скорости направлен вниз. Время падения: Скорость тела в любой точке Бросок вертикально вверх υ = υ0 – gt. Через время υ0 / g скорость тела υ обращается в нуль, т. е. тело достигает высшей точки подъема. Тело возвращается на землю (y = 0) через время 2υ0 / g, следовательно, время подъема и время падения одинаковы. Бросок под углом к горизонту. Для кинематического описания движения тела удобно одну из осей системы координат (ось OY) направить вертикально вверх, а другую (ось OX) – расположить горизонтально. Тогда движение тела по криволинейной траектории можно представить как сумму двух движений, протекающих независимо друг от друга – движения с ускорением свободного падения вдоль оси OY и равномерного прямолинейного движения вдоль оси OX. Таким образом, для движения вдоль оси OX имеем следующие условия:
а для движения вдоль оси OY
Время полета: Дальность полета: Максимальная высота подъема: Кинематика вращательного движения Пусть некоторая точка движется по окружности радиуса r. Изменение положения точки в пространстве за промежуток времени Δt определяется углом поворота Δ. Угловой скоростью называется векторная величина, равная пределу отношения угла поворотак промежутку времениt, за который этот поворот произошел, при стремлении t к нулю: , где – первая производная от функции угла поворота радиус-вектора по времениt. Эту производную принято обозначать, как . Вектор направлен вдоль оси вращения в соответствии с правилом правого винта Угловым ускорением называется векторная величина, равная пределу отношения изменения угловой скоростик промежутку времениt, за который это изменение произошло, при стремлении t к нулю: , где – первая производная от функциипо времениt, –вторая производная от функции по времениt. Вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном вращении направление вектора совпадает с направлением вектора угловой скорости, а при замедленном – противоположно ему. Кинематические параметры поступательного и вращательного движения связаны между собой. Связь скорости и угловой скорости(см. рис. 3) определяется следующим образом:. В векторном виде эту связь для векторов иможно записать с помощью векторного произведения:. Ускорение а также можно выразить через угловые параметры, разложив ускорение а на две составляющие и, то есть:. Тангенциальная составляющая выражается через угловое ускорение: , а нормальная составляющая – через угловую скорость: . Тогда ускорение: . При равномерном вращении угловая скорость не изменяется. В этом случае вращение можно характеризовать периодом вращения T, то есть временем, за которое точка совершает один полный оборот. Угловая скорость равномерного вращения связана с периодом вращения: . |