Главная страница

Экзаминационные вопросы. Экзаменационные вопросы по медицинской микробиологии I. История развития микробиологии. Морфология микроорганизмов


Скачать 156.5 Kb.
НазваниеЭкзаменационные вопросы по медицинской микробиологии I. История развития микробиологии. Морфология микроорганизмов
АнкорЭкзаминационные вопросы.doc
Дата08.02.2018
Размер156.5 Kb.
Формат файлаdoc
Имя файлаЭкзаминационные вопросы.doc
ТипЭкзаменационные вопросы
#15347


ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ ПО МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ
I. История развития микробиологии. Морфология микроорганизмов.
1. Л. Пастер - основоположник микробиологии как науки. Влияние работ Пастера на развитие медицинской микробиологии.

Важнейшие открытия в микробиологии принадлежат французскому ученому Луи Пастеру (1822—1895). Приро­да щедро одарила этого чело­века. Химик по образованию, Л. Пастер имел степени бака­лавра математических наук и литературы, обладал талан­том художника-портретиста. Все это помогало ему в науч­ной деятельности.

Пастер заложил основы нового направления в микро­биологии — физиологическо­го, доказав роль микроорга­низмов как возбудителей

многих биохимических процессов и заболеваний человека и животных.

После установления причин брожения вина сферой инте­ресов ученого становятся микроорганизмы. Он показал, что каждый тип брожения (спиртовое, молочнокислое и др.) име­ет своих возбудителей. Им открыто явление анаэробиоза, оп­ровергнута возможность самопроизвольного зарождения жи­вого, доказана микробная природа процессов гниения, введе­но в практику микробиологии множество методов исследова­ния.

Изучение Л. Пастером возбудителей заболеваний началось с работы с насекомыми. Он установил, что причиной гибели шелковичных червей являются микроорганизмы и для предот­вращения заболеваний необходимы профилактические меры. Открытие инфекционных болезней у насекомых послужило базой для разработки в дальнейшем биологических методов борьбы с вредителями сельскохозяйственных растений.

Пастера по праву считают создателем медицинской микро­биологии. Им открыта причина «родильной горячки», уносив­шей жизни рожениц; заложены основы асептики, антисепти­ки, дезинфекции. Разработаны принципы аттенуации (ослаб­ления вирулентности) патогенных штаммов микроорганизмов, что легло в основу иммунопрофилактики инфекционных бо­лезней. В его лаборатории были впервые приготовлены живые аттенуированные вакцины для профилактики холеры кур, краснухи свиней, сибирской язвы у животных.

Имя Луи Пастера стало известно во всем мире после создания вакцины против бешен­ства, спасшей жизни сотням людей, укушенных больными животными. Несмотря на ус­пехи, путь Пастера в науке был трудным и требовал не­вероятного трудолюбия и му­жества. Преодолев все, Пастер заслужил признание. В 1888 г. на народные средства, собранные по подписке в разных странах, в Париже был построен научно-иссле­довательский институт, пер­вым директором которого стал Л. Пастер. Сейчас этот институт носит имя великого ученого. Уважение к заслугам и личности Луи Пастера луч­ше всего выражено в надписи на памятной медали, вручен­ной ему 22 декабря 1892 г.: «Пастеру в день его семидесятиле­тия — благодарные наука и человечество». Во всем мире име­нем великого французского исследователя названы научные и лечебные учреждения.
2. Работы Р. Коха и их значение в практической микробиологии и инфекционной патологии.
Прогрессу медицинской микробиологии способствовали открытия немецкого врача Роберта Коха (1843—1910). Разра­ботанные в его лаборатории плотные питательные среды, спо­собы окрашивания препаратов анилиновыми красителями, выделения чистых культур, а также микрофотографирования вывели микробиологию на новый методический уровень.

Основной целью исследований Р. Коха стало изучение па­тогенных микроорганизмов. В 1876 г. был опубликован его труд о сибирской язве, содержащий новые представления об этиологии и профилактике этого опасного заболевания. 24 марта 1882 г. Р. Кох сообщил об открытии возбудителя ту­беркулеза, а годом позже — о выделении чистой культуры хо­лерного вибриона. Несмотря на то что в настоящее время воз­будитель туберкулеза называется Mycobacterium tuberculosis, a холерный вибрион — Vibrio cholerae, они известны во всем мире как «палочка Коха» и «вибрион Коха». В 1905 г. Р. Кох был удостоен Нобелевской премии за открытия в области ме­дицины.
3. И.И.Мечников и его учение о невосприимчивости к инфекционным болезням.

После работ Л. Пастера появилось множество исследований, в которых пытались объяснить причины и механизмы формиро­вания иммунитета после вакцинации. Выдающуюся роль в этом сыграли работы И. И. Мечникова и П. Эрлиха.

Исследования И. И. Мечни­кова (1845—1916) показали, что большую роль в формировании иммунитета играют особые клетки — макро- и микрофаги. Эти клетки поглощают и переваривают чужеродные частицы, в том числе бактерии. Исследования И. И. Мечникова по фагоцитозу убедительно доказали, что, помимо гуморального, существует клеточный иммунитет. И. И. Мечников, ближайший помощник и последователь Л. Пастера, заслуженно считается одним из ос­новоположников иммунологии. Его работы положили начало изу­чению иммунокомпетентных клеток как морфологической основы иммунной системы, ее единства и биологической сущности.

Л. Пастер и Р. Кох создали в своих странах крупные шко­лы микробиологов. В институте у Л. Пастера работал русский ученый И. И. Мечников (1845—1916) — создатель учения о фагоцитозе, организатор первой в России бактериологической станции в Одессе. Он занимался также изучением патогенеза холеры, сифилиса; проблема­ми старения (связывая старе­ние с деятельностью гнилост­ных бактерий кишечника). В 1908 г. за разработку клеточ­ной теории иммунитета И. И. Мечников вместе с Паулем Эрлихом (1854— 1915) — создателем теории гуморального иммунитета был удостоен Нобелевской премии. Их открытия стали основой для развития имму­нологического направления в микробиологии.

4. Значение открытия Д.И.Ивановского. Этапы развития вирусологии.

Открытием века стали исследования Д. И. Ивановского (1864—1920), обнаружившего первый вирус — вирус табачной мозаики, вызывающий поражение растения. С этого момента— 1892 г.—началось формирование вирусологии. В области новой науки работали выдающиеся ученые мира.

Этапы развития:

Конец XIX — начало XX-го века. Основным методом идентификации вирусов в этот период был метод фильтрации через бактериологические фильтры, которые использовались как средство разделения возбудителей на бактерии и небактерии. Были открыты следующие вирусы: вирус табачной мозаики; ящура; желтой лихорадки; оспы и трахомы; полиомиелита; кори; вирус герпеса.

30-е годы — основным вирусологическим методом, используемым для выделения вирусов и их дальнейшей идентификации, являются лабораторные животные. 1931 г. — в качестве экспериментальной модели для выделения вирусов стали использоваться куриные эмбрионы, которые обладают высокой чувствительностью к вирусам гриппа, оспы, лейкоза. Открыты: вирус гриппа; клещевого энцефалита.

40-е годы. Установили, что вирус осповакцины содержит ДНК, но не РНК. Стало очевидным, что вирусы отличаются от бактерий не только размерами и неспособностью расти без клеток, но и тем, что они содержат только один вид нуклеиновой кислоты — ДНК или РНК. Введение в вирусологию метода культуры клеток явилось важным событием, давшим возможность получения культуральных вакцин. Из широко применяемых в настоящее время культуральных живых и убитых вакцин, созданных на основе аттенуированных штаммов вирусов, следует отметить вакцины против полиомиелита, паротита, кори и краснухи.

50-е годы: Открыты вирусы: аденовирусы; краснухи; вирусы парагриппа.

70-е годы: открытие в составе РНК-содержащих онкогенных вирусов фермента обратной транскриптазы (ревертазы). Становится реальным изучение генома РНК содержащих вирусов. Открыты вирусы: вирус гепатита B; ротавирусы, вирус гепатита A.

80-е годы. Развитие представлений о том, что возникновение опухолей может быть связано с вирусами. Компоненты вирусов, ответственные за развитие опухолей, назвали онкогенами. Открыты вирусы: иммунодефицита человека; вирус гепатита C.

5. Световой микроскоп, его устройство, разрешающая сила и работа с ним в микробиологической лаборатории. Изучение микробов в световом, люминесцентном и других микроскопах.

Бактериоскопичесшй (микроскопический). С помощью микроскопа в специально приготовленных препаратах изуча­ют форму, структуру, размер, подвижность, тинкториальные свойства. Используются различные типы микроскопов — све­товой, фазово-контрастный, темнопольный, люминесцентный и электронный.

Под разрешающей способностью объектива микроскопа (d) понимают тот наименьший диаметр частицы, которую можно увидеть в микроскоп. У светового 200-300 нм.

С помощью простых луп можно получить увеличение не более чем в 25 раз. Есть способ достигнуть больших увеличений: нужно установить две увеличивающие линзы на определенном расстоянии друг от друга. Тогда первая линза (обращенный к объекту исследования объектив) создаст увеличенное изображение, которое будет еще раз увеличено второй линзой (окуляром ), то есть общее увеличение станет результатом сложения отдельных увеличений. И именно такое, состоящее из нескольких линз, устройство сегодня мы называем микроскопом. Для того чтобы на линзы не попадал снаружи излишний свет и выдерживалось точное расстояние между ними, линзы помещаются в трубу — тубус.

В современных микроскопах окуляр и объектив представляют собой системы линз.

Главная роль принадлежит объективу: если он плохого качества, то окуляр не улучшает изображение, а увеличивает его дефекты. Высококачественные объективы состоят более чем из дюжины точно отшлифованных линз и стоят порядка нескольких тысяч рублей.

Разумеется, важно хорошее освещение. Поэтому в микроскопы встраиваются специальные приборы — светосильные лампы накаливания, а также системы линз, которые концентрируют свет на объекте наблюдения и в зависимости от увеличения позволяют установить оптимальную яркость.

Для световой микроскопии биологические объекты обычно окрашивают с целью выявления тех или иных их свойств (рис. 1). При этом ткани должны быть фиксированы, т.к. окраска выявляет определенные структуры только убитых клеток. В живой клетке краситель обособляется в цитоплазме в виде вакуоли и не прокрашивает ее структуры. Однако в световом микроскопе можно изучать и живые биологические объекты с помощью метода витальной микроскопии. В этом случае применяют темнопольный конденсор, который встраивают в микроскоп.

Для исследования живых и неокрашенных биологических объектов используют также фазово-контрастную микроскопию.

Широкое распространение имеет люминесцентная микроскопия. Она основана на свойстве некоторых веществ давать свечение — люминесценцию в УФ-лучах или в сине-фиолетовой части спектра. Многие биологические вещества, такие как простые белки, коферменты, некоторые витамины и лекарственные средства, обладают собственной (первичной) люминесценцией. Другие вещества начинают светиться только при добавлении к ним специальных красителей — флюорохромов (вторичная люминесценция). Флюорохромы могут распределяться в клетке диффузно либо избирательно окрашивают отдельные клеточные структуры или определенные химические соединения биологического объекта.





6. Простые и сложные методы окраски микробов. Принципы окраски по Граму, Циль-Нильсену, Нейссеру. Романовскому -Гимза, их применение.

Методы окраски. Окраску мазка производят просты­ми или сложными методами. Простые за­ключаются в окраске препарата одним красителем; сложные методы (по Граму, Цилю — Нильсену и др.) включают последо­вательное использование нескольких красителей и имеют диффе­ренциально-диагностическое значение. Отношение микроорганиз­мов к красителям расценивают как тинкториальные свойства. Существуют специальные методы окраски, которые используют для выявления жгутиков, клеточной стенки, нуклеоида и разных цитоплазматических включений.

При простых методах мазок окрашивают каким-либо одним красителем, ис­пользуя красители анилинового ряда (основные или кис­лые). Если красящий ион (хромофор) — катион, то краситель обладает основными свойствами, если хромо­фор - анион, то краситель имеет кислые свойства. Кис­лые красители — эритрозин, кислый фуксин, эозин. Ос­новные красители — генциановый фиолетовый, кристал­лический фиолетовый, метиленовый синий, основной фуксин. Преимущественно для окраски микроорганизмов используют основные красители, которые более интенсивно связываются кислыми компонентами клетки. Из сухих красителей, продающихся в виде порошков, готовят на­сыщенные спиртовые растворы, а из них — водно-спирто­вые, которые и служат для окрашивания микробных кле­ток. Микроорганизмы окрашивают, наливая краситель на поверхность мазка на определенное время. Окраску основным фуксином ведут в течение 2 мин, метиленовым синим — 5—7 мин. Затем мазок промывают водой до тех пор, пока стекающие струи воды не станут бесцветными, высушивают осторожным промоканием фильтровальной бумагой и микроскопируют в иммерсионной системе. Ес­ли мазок правильно окрашен и промыт, то поле зрения совершенно прозрачно, а клетки интенсивно окрашены.

Сложные методы окраски применяют для изуче­ния структуры клетки и дифференциации микроорганиз­мов. Окрашенные мазки микроскопируют в иммерсион­ной системе. Последовательно нанести на препа­рат определенные красители, различающиеся по химическому составу и цвету, протравы, спирты, кислоту и др.

Существуют несколько основных окрасок: по Граму, по Цилю-Нельсону, по Ауески, Нейссера, Бури-Гинса.

7. Этапы развития бактериологии. Принципы классификации бактерий. Понятие о виде. Культура. Штамм. Клон.
1.Эмпирических знаний  до изобретения микроскопов
2.Морфологический период занял около двухсот лет. Левенгук в 1675г. впервые описал простейших, в 1683г.- основные формы бактерий.
3.Физиологический период (с 1875г.)- эпоха Л.Пастера и Р.Коха. Л.Пастер- изучение микробиологических основ процессов брожения и гниения, развитие промышленной микробиологии, выяснение роли микроорганизмов в кругообороте веществ в природе, открытие анаэробных микроорганизмов, разработка принципов асептики, методов стерилизации, ослабления  вирулентности и получения вакцин (вакцинных штаммов). Р.Кох- метод выделения чистых культур на твердых питательных средах, способы окраски бактерий анилиновыми красителями, открытие возбудителей сибирской язвы, холеры. туберкулеза (палочки Коха), совершенствование техники микроскопии.
4.Иммунологический период.
И.И.Мечников-  - учение о невосприимчивости (иммунитете), разработав теорию фагоцитоза и обосновав клеточную теорию иммунитета.
Одновременно накапливались данные о выработке в организме антител против бактерий и их токсинов, позволившие П.Эрлиху разработать гуморальную теорию иммунитета. И.И.Мечникову и П.Эрлиху в 1908г. была присуждена Нобелевская премия.
В  1892г. Д.И.Ивановский сообщил, что возбудителем мозаичной болезни табака является фильтрующийся вирус. Эту дату можно считать днем рождения вирусологии, а Д.И.Ивановского - ее основоположником.
5. Следующим важным этапом в развитии микробиологии стало открытие антибиотиков. В 1929г. А.Флеминг открыл пенициллин и началась эра антибиотикотерапии, приведшая к революционному прогрессу медицины.
6. Современный молекулярно- генетический этап развития микробиологии, вирусологии и иммунологии начался во второй половине 20 века в связи с достижениями генетики и молекулярной биологии, созданием электронного микроскопа.
Объектами изучения микробиологии являются представители трех «царств» — Procariotae, к которому относятся бактерии, Eucariotae, включающего грибы (Mycota) и простейших (Pro­tozoa), и Vira, объединяющего вирусы.

Общий признак всех микроорганизмов — очень мелкие размеры. Они невидимы простым глазом и обнаруживаются при помощи микроскопа.

Величину бактерий измеряют в микрометрах (1 мм = 1000 мкм), а размеры органелл микроорганизмов выражают в нанометрах (1 мкм = 1000 нм). При электронной микро­скопии используют еще более мелкие единицы — ангстре­мы (1 мм = 10 000 000 А).

Систематика и классификация микроорганизмов с целью распределения их по группам — таксонам проводится с учетом совокупности признаков и свойств: морфологических, тинкториальных (способности окрашиваться красителями), культуральных, физиолого-биохимических, антигенных, организа¬ции генома. Дифференциальными признаками служат также подвижность, спорообразование, чувствительность к бактериофагам и др.
Клон — потомство клеток микроорганизмов, полученных из одной клетки или одной споры. Это генетически идентичные и фенотипически однородные культуры. Клоны можно выде¬лить путем культивирования изолированной клетки или споры на питательной среде. При этом обычно используют несе-лективные среды и проводят на них многократные пересевы клонируемых культур.
Чистая культура — это совокупность микроорганизмов од¬ного вида или варианта, полученная из одной изолированной колонии.
Штамм — чистая культура, выделенная из определенного источника (организма человека, животных, окружающей среды).

8. Структура бактериальной клетки: оболочка, ядерная субстанция, цитоплазма, капсулы, споры, включения, жгутики. Химический состав бактерий. Группы бактерий.

Капсула — наружный защитный слой. Капсула расположена снаружи клеточной стенки бактерии. Ее толщина и химический состав неодинаковы у бактерий различных видов. Иногда капсула в несколько раз превышает по толщи¬не клетку. В некоторых случаях она очень тонкая. В зависи¬мости от толщины и консистенции различают макро- и микрокапсулы и слизистые чехлы. Обычно капсулы представлены полисахаридами. Капсулы выполняют ряд функций. Они защищают клетку от неблагоприятных внешних воздействий. С их помощью не-которые бактерии более прочно присоединяются к субстрату. Например, постоянный обитатель ротовой полости Streptococcus mutans приклеивается с помощью капсулы к поверхности зубов и образует «бляшки».

Клеточная стенка — поверхностная структура. Она пред-ставляет собой внешнюю оболочку, окружающую бактерии. Выполняет функции защиты от внешней среды, поддерживает и сохраняет форму клетки и участвует в транспорте питатель¬ных веществ и продуктов метаболизма.

Структура и химический состав клеточной стенки постоян¬ны для определенного вида и служат дифференциальными признаками.

По химическому составу клеточная стенка — сложный био-гетерополимер. Основной компонент в ней представлен пептидогликаном.

Цитоплазматическая мембрана прилегает к клеточной стен¬ке с внутренней стороны и отграничивает цитоплазму. Ее разрушение влечет за собой гибель клетки. У прокариотных мик¬роорганизмов мембрана выполняет защитную, метаболическую функции, участвует в процессе деления клеток и в спо-рообразовании.

Цитоплазма — коллоидная система, состоящая из белков, углеводов, жиров, минеральных веществ, ДНК и РНК.

Генетический материал бактериальной клетки представлен ДНК. Его называют также геномом клетки, ядерным аппара¬том, нуклеоидом.

Жгутики — органоиды движения. Они состоят из базально-го тела, локализованного в цитоплазматической мембране, крюка и нити. Жгутики проходят через клеточную стенку и располагаются снаружи клетки в виде нитей.

Спора образуется у бацилл, представляет стадию покоя. Одна клетка превращается в одну спору. Спорообразование не является способом размножения, это приспособление для сохранения вида в неблагоприятных условиях внешней среды.



9. Морфология и ультраструктура грибов. Систематика грибов. Культуральные свойства Патогенные представители.

Грибы относятся к царству Fungi (Mycetes, Mycota). Это мно­гоклеточные или одноклеточные нефотосинтезирующие (бесхлорофильные) эукариотические микроорганизмы с клеточной стенкой.

Грибы имеют ядро с ядерной оболочкой, цитоплазму с органеллами, цитоплазматическую мембрану и многослойную, ригидную клеточную стенку, состоящую из нескольких типов полисахаридов, а также белка, липидов и др. Некоторые грибы образуют капсу­лу. Цитоплазматическая мембрана содержит гликопротеины, фосфолипиды и эргостеролы. Грибы являются грамположительными микробами, вегетативные клетки — не­кислотоустойчивые.

Грибы состоят из длинных тонких нитей (гиф), спле­тающихся в грибницу, или мицелий. Гифы низших грибов — фикомицетов — не имеют перегородок. У высших грибов — эуми-цетов — гифы разделены перегородками; их мицелий многокле­точный.

Различают гифальные и дрожжевые формы грибов.

Гифальные (плесневые) грибы образуют ветвящиеся тонкие нити (гифы), сплетающиеся в грибницу, или мицелий (плесень). Гифы, врастающие в питательный субстрат, называются вегетатив­ными гифами (отвечают за питание гриба), а растущие над поверхностью субстрата — воздушными или репродуктив­ными гифами (отвечают за бесполое размножение).

Гифы низших грибов не имеют перегородок. Они пред­ставлены многоядерными клетками и называются ценоцитными.

Гифы высших грибов разделены перегородками, или сеп­тами с отверстиями.

Дрожжевые грибы (дрожжи), в основном, имеют вид от­дельных овальных клеток (одноклеточные грибы). По типу полового размножения они распределены среди высших грибов — аскомицет и базидиомицет. При бесполом размно­жении дрожжи образуют почки или делятся, что приводит к одноклеточному росту. Могут образовывать псевдогифы и ложный мицелий (псевдомицелий) в виде цепочек удлинен­ных клеток — «сарделек». Грибы, аналогичные дрожжам, но не имеющие полового способа размножения, называют дрожжеподобными. Они размножаются только бесполым способом — почкованием или делением.

Грибы размножаются спорами половым и бесполым спосо­бами, а также вегетативным путем (почкование или фрагмента­ция гиф). Грибы, размножающиеся половым и бесполым путем, относятся к совершенным. Несовершенными называют грибы, у которых отсутствует или еще не описан половой путь размно­жения. Бесполое размножение осуществляется у грибов с помо­щью эндогенных спор, созревающих внутри круглой структуры — спорангия, и экзогенных спор — конидий, форми­рующихся на кончиках плодоносящих гиф.

Типы грибов. Выделяют 3 типа грибов, имеющих половой способ размножения (так называ­емые совершенные грибы): зигомицеты (Zygomycota), аскомицеты (Ascomycota) и базидиомицеты (Basidiomycota). Отдельно выделяют условный, формальный тип/группу грибов — дейтеромицеты (Deiteromycota), у которых имеется только бесполый способ размножения (так называемые несовершенные грибы).

Патогенность. Грибы рода Trichophyton, Microsporum, Achorion вызывают поражения кожи, волос, ногтей. Серьезную угрозу для жизни и здоровья людей представляют возбудители глубоких микозов (роды Coccidioides, Hystoplasma)

10. Морфология простейших. Принципы классификации. Патогенные для человека протисты.

Простейшие — эукариотические одноклеточные микроорганиз­мы, составляющие подцарство Protozoa царства животных (Animalia). Простейшие включают 7 типов, из которых четыре типа (Sarcomastigophora, Apicomplexa, Ciliophora, Microspora) имеют представите­лей, вызывающих заболевания у человека. Размеры простейших колеблются в среднем от 5 до 30 мкм.

Снаружи простейшие окружены мембраной (пелликулой) — аналогом цитоплазматической мембраны клеток животных. Не­которые простейшие имеют опорные фибриллы.

Цитоплазма и ядро соответствуют по строению эукариотическим клеткам: ци­топлазма состоит из эндоплазматического ретикулума, митохон­дрий, лизосом, многочисленных рибосом и др.; ядро имеет яд­рышко и ядерную оболочку.

Передвигаются простейшие посред­ством жгутиков, ресничек и путем образования псевдоподий.

Простейшие могут питаться в результате фагоцитоза или обра­зования особых структур. Многие простейшие при неблагопри­ятных условиях образуют цисты — покоящиеся стадии, устой­чивые к изменению температуры, влажности и др.

Простейшие окрашиваются по Романовскому—Гимзе (ядро — красного, ци­топлазма — синего цвета).

Тип Sarcomastigophora. Подтип Mastigophora (жгутико­носцы) включает следующих патогенных представителей: трипаносому — возбудителя африканского трипаносомоза (сонная болезнь); лейшмании — возбудителей кожной и висцеральной форм лейшманиозов; трихомонады, передающиеся половым пу­тем и паразитирующие в толстой кишке человека; лямблию — возбудителя лямблиоза. Эти простейшие характеризуются нали­чием жгутиков: один — у лейшмании, четыре сво­бодных жгутика и короткая ундулирующая мембрана — у три-хомонад.

К подтипу Sarcodina (саркодовые) относится дизен­терийная амеба — возбудитель амебной дизентерии человека. Морфологически сходна с ней непатогенная кишечная амеба. Эти простейшие передвигаются путем образования псевдоподий. Питательные вещества захватываются и погружаются в цитоплазму клеток. Половой путь размножения у амеб отсутствует. При неблагоприятных условиях они образуют цисту.

Тип Apicomplexa. В классе Sporozoa (споровики) па­тогенными представителями являются возбудители токсоплазмоза, кокцидиоза, саркоцистоза и малярии. Жизненный цикл возбудителей малярии характеризуется чередо­ванием полового размножения (в организме комаров Anopheles) и бесполого (в клетках тканей и эритроцитах человека они раз­множаются путем множественного деления). Токсоплазмы имеют форму полулуний. Токсоплазмозом человек заражается от живот­ных. Токсоплазмы могут передаваться через плаценту и поражать центральную нервную систему и глаза плода.

Тип Ciliophora. Патогенный представитель — возбудитель ба-лантидиаза — поражает толстый кишечник человека. Балантидии имеют многочисленные реснички и поэтому подвижны.

Тип Microsporaвключает микроспоридии — маленькие (0,5—10 мкм) облигатные внутрик­леточные паразиты, широко распространенные среди животных и вызывающие у ослабленных людей диарею и гнойно-воспалительные забо­левания.
11. Особенности морфологии и биологии вирусов. Принципы классификации.

Вирусы — мельчайшие микробы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только ДНК или РНК. Относятся к царству Vira. Являясь облигатными внутриклеточными паразитами, вирусы размножаются в ци­топлазме или ядре клетки. Они — автономные генетические структуры. Отличаются особым — разобщенным (дисъюнктивным) способом размножения (репродукции): в клетке от­дельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы. Сформированная вирусная частица называется вирионом.

Морфологию и структуру вирусов изучают с помощью элек­тронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий.

Форма вирионов может быть раз­личной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиели­та, ВИЧ), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы.

Простые, или безоболочечные, вирусы состоят из нуклеиновой кисло­ты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц — капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Сложные, или оболочечные, вирусы снаружи капсида окружены ли-попротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболоч­ка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые ши­пы, или шипики (пепломеры). Под оболочкой некоторых вирусов нахо­дится матриксный М-белок.

Тип симметрии. Капсид или нуклеокапсид могут иметь спираль­ный, икосаэдрический (кубический) или слож­ный тип симметрии. Икосаэдрический тип сим­метрии обусловлен образованием изометричес­ки полого тела из капсида, содержащего вирус­ную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спираль­ный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа).

Включения — скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выяв­ляемые под микроскопом при специальном окрашива­нии. Вирус натуральной оспы образует цитоплазмати-ческие включения — тельца Гварниери; вирусы герпеса и аденовирусы — внутриядерные включения.

Размеры вирусов определяют с помощью электронной мик­роскопии, методом ультрафильтрации через фильтры с извест­ным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным — натуральной оспы (около 350 нм).

Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. име­ют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицатель­ным (минус-нить РНК) геномом. Минус-нить РНК этих виру­сов выполняет только наследственную функцию.

Вирусы поражают позвоночных и беспозвоночных животных, а также растения и бактерии. Являясь основными возбудителя­ми инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными пу­тями, в том числе через плаценту (вирус краснухи, цитомега ловирус и др.), поражая плод человека. Они могут приводить к постинфекционным осложнениям — развитию миокардитов, пан­креатитов, иммунодефицитов и др.

Кроме обычных вирусов, известны и так называемые нека­нонические вирусы — прионы — белковые инфекционные ча­стицы, являющиеся агентами белковой природы, имеющие вид фибрилл размером 10—20x100—200 нм. Прионы, по-видимому, являются одновременно индукторами и продуктами автономно­го гена человека или животного и вызывают у них энцефалопа­тии в условиях медленной вирусной инфекции (болезни Крейтц-фельдта—Якоба, куру и др.).

Другими необычными агентами, близкими к вирусам, явля­ются вироиды — небольшие молекулы кольцевой, суперспи-рализованной РНК, не содержащие белка, вызывающие забо­левания у растений.
12. Структура и химический состав вирусов.

Вирусы — мельчайшие микробы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только ДНК или РНК. Относятся к царству Vira. Являясь облигатными внутриклеточными паразитами, вирусы размножаются в ци­топлазме или ядре клетки. Они — автономные генетические структуры. Отличаются особым — разобщенным (дисъюнктивным) способом размножения (репродукции): в клетке от­дельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы. Сформированная вирусная частица называется вирионом.

Морфологию и структуру вирусов изучают с помощью элек­тронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий.

Форма вирионов может быть раз­личной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиели­та, ВИЧ), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы.

Простые, или безоболочечные, вирусы состоят из нуклеиновой кисло­ты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц — капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Сложные, или оболочечные, вирусы снаружи капсида окружены ли-попротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболоч­ка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые ши­пы, или шипики (пепломеры). Под оболочкой некоторых вирусов нахо­дится матриксный М-белок.

Капсид и суперкапсид защищают вирионы от влияния окру­жающей среды, обусловливают избирательное взаимодействие (адсорбцию) с клетками, определяют антигенные и иммуногенные свойства вирионов. Внутренние структуры вирусов называ­ются сердцевиной.

Тип симметрии. Капсид или нуклеокапсид могут иметь спираль­ный, икосаэдрический (кубический) или слож­ный тип симметрии. Икосаэдрический тип сим­метрии обусловлен образованием изометричес­ки полого тела из капсида, содержащего вирус­ную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спираль­ный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа).

Включения — скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выяв­ляемые под микроскопом при специальном окрашива­нии. Вирус натуральной оспы образует цитоплазмати-ческие включения — тельца Гварниери; вирусы герпеса и аденовирусы — внутриядерные включения.

Размеры вирусов определяют с помощью электронной мик­роскопии, методом ультрафильтрации через фильтры с извест­ным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным — натуральной оспы (около 350 нм).

Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. име­ют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицатель­ным (минус-нить РНК) геномом. Минус-нить РНК этих виру­сов выполняет только наследственную функцию.

Геном вирусов способен включаться в состав генетического аппарата клетки в виде провируса, проявляя себя генетическим паразитом клетки. Нуклеиновые кислоты некоторых вирусов (вирусы герпеса и др.) могут находиться в цитоплазме инфициро­ванных клеток, напоминая плазмиды.




написать администратору сайта