Экзаминационные вопросы. Экзаменационные вопросы по медицинской микробиологии I. История развития микробиологии. Морфология микроорганизмов
Скачать 156.5 Kb.
|
ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ ПО МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ I. История развития микробиологии. Морфология микроорганизмов. 1. Л. Пастер - основоположник микробиологии как науки. Влияние работ Пастера на развитие медицинской микробиологии. Важнейшие открытия в микробиологии принадлежат французскому ученому Луи Пастеру (1822—1895). Природа щедро одарила этого человека. Химик по образованию, Л. Пастер имел степени бакалавра математических наук и литературы, обладал талантом художника-портретиста. Все это помогало ему в научной деятельности. Пастер заложил основы нового направления в микробиологии — физиологического, доказав роль микроорганизмов как возбудителей многих биохимических процессов и заболеваний человека и животных. После установления причин брожения вина сферой интересов ученого становятся микроорганизмы. Он показал, что каждый тип брожения (спиртовое, молочнокислое и др.) имеет своих возбудителей. Им открыто явление анаэробиоза, опровергнута возможность самопроизвольного зарождения живого, доказана микробная природа процессов гниения, введено в практику микробиологии множество методов исследования. Изучение Л. Пастером возбудителей заболеваний началось с работы с насекомыми. Он установил, что причиной гибели шелковичных червей являются микроорганизмы и для предотвращения заболеваний необходимы профилактические меры. Открытие инфекционных болезней у насекомых послужило базой для разработки в дальнейшем биологических методов борьбы с вредителями сельскохозяйственных растений. Пастера по праву считают создателем медицинской микробиологии. Им открыта причина «родильной горячки», уносившей жизни рожениц; заложены основы асептики, антисептики, дезинфекции. Разработаны принципы аттенуации (ослабления вирулентности) патогенных штаммов микроорганизмов, что легло в основу иммунопрофилактики инфекционных болезней. В его лаборатории были впервые приготовлены живые аттенуированные вакцины для профилактики холеры кур, краснухи свиней, сибирской язвы у животных. Имя Луи Пастера стало известно во всем мире после создания вакцины против бешенства, спасшей жизни сотням людей, укушенных больными животными. Несмотря на успехи, путь Пастера в науке был трудным и требовал невероятного трудолюбия и мужества. Преодолев все, Пастер заслужил признание. В 1888 г. на народные средства, собранные по подписке в разных странах, в Париже был построен научно-исследовательский институт, первым директором которого стал Л. Пастер. Сейчас этот институт носит имя великого ученого. Уважение к заслугам и личности Луи Пастера лучше всего выражено в надписи на памятной медали, врученной ему 22 декабря 1892 г.: «Пастеру в день его семидесятилетия — благодарные наука и человечество». Во всем мире именем великого французского исследователя названы научные и лечебные учреждения. 2. Работы Р. Коха и их значение в практической микробиологии и инфекционной патологии. Прогрессу медицинской микробиологии способствовали открытия немецкого врача Роберта Коха (1843—1910). Разработанные в его лаборатории плотные питательные среды, способы окрашивания препаратов анилиновыми красителями, выделения чистых культур, а также микрофотографирования вывели микробиологию на новый методический уровень. Основной целью исследований Р. Коха стало изучение патогенных микроорганизмов. В 1876 г. был опубликован его труд о сибирской язве, содержащий новые представления об этиологии и профилактике этого опасного заболевания. 24 марта 1882 г. Р. Кох сообщил об открытии возбудителя туберкулеза, а годом позже — о выделении чистой культуры холерного вибриона. Несмотря на то что в настоящее время возбудитель туберкулеза называется Mycobacterium tuberculosis, a холерный вибрион — Vibrio cholerae, они известны во всем мире как «палочка Коха» и «вибрион Коха». В 1905 г. Р. Кох был удостоен Нобелевской премии за открытия в области медицины. 3. И.И.Мечников и его учение о невосприимчивости к инфекционным болезням. После работ Л. Пастера появилось множество исследований, в которых пытались объяснить причины и механизмы формирования иммунитета после вакцинации. Выдающуюся роль в этом сыграли работы И. И. Мечникова и П. Эрлиха. Исследования И. И. Мечникова (1845—1916) показали, что большую роль в формировании иммунитета играют особые клетки — макро- и микрофаги. Эти клетки поглощают и переваривают чужеродные частицы, в том числе бактерии. Исследования И. И. Мечникова по фагоцитозу убедительно доказали, что, помимо гуморального, существует клеточный иммунитет. И. И. Мечников, ближайший помощник и последователь Л. Пастера, заслуженно считается одним из основоположников иммунологии. Его работы положили начало изучению иммунокомпетентных клеток как морфологической основы иммунной системы, ее единства и биологической сущности. Л. Пастер и Р. Кох создали в своих странах крупные школы микробиологов. В институте у Л. Пастера работал русский ученый И. И. Мечников (1845—1916) — создатель учения о фагоцитозе, организатор первой в России бактериологической станции в Одессе. Он занимался также изучением патогенеза холеры, сифилиса; проблемами старения (связывая старение с деятельностью гнилостных бактерий кишечника). В 1908 г. за разработку клеточной теории иммунитета И. И. Мечников вместе с Паулем Эрлихом (1854— 1915) — создателем теории гуморального иммунитета был удостоен Нобелевской премии. Их открытия стали основой для развития иммунологического направления в микробиологии. 4. Значение открытия Д.И.Ивановского. Этапы развития вирусологии. Открытием века стали исследования Д. И. Ивановского (1864—1920), обнаружившего первый вирус — вирус табачной мозаики, вызывающий поражение растения. С этого момента— 1892 г.—началось формирование вирусологии. В области новой науки работали выдающиеся ученые мира. Этапы развития: Конец XIX — начало XX-го века. Основным методом идентификации вирусов в этот период был метод фильтрации через бактериологические фильтры, которые использовались как средство разделения возбудителей на бактерии и небактерии. Были открыты следующие вирусы: вирус табачной мозаики; ящура; желтой лихорадки; оспы и трахомы; полиомиелита; кори; вирус герпеса. 30-е годы — основным вирусологическим методом, используемым для выделения вирусов и их дальнейшей идентификации, являются лабораторные животные. 1931 г. — в качестве экспериментальной модели для выделения вирусов стали использоваться куриные эмбрионы, которые обладают высокой чувствительностью к вирусам гриппа, оспы, лейкоза. Открыты: вирус гриппа; клещевого энцефалита. 40-е годы. Установили, что вирус осповакцины содержит ДНК, но не РНК. Стало очевидным, что вирусы отличаются от бактерий не только размерами и неспособностью расти без клеток, но и тем, что они содержат только один вид нуклеиновой кислоты — ДНК или РНК. Введение в вирусологию метода культуры клеток явилось важным событием, давшим возможность получения культуральных вакцин. Из широко применяемых в настоящее время культуральных живых и убитых вакцин, созданных на основе аттенуированных штаммов вирусов, следует отметить вакцины против полиомиелита, паротита, кори и краснухи. 50-е годы: Открыты вирусы: аденовирусы; краснухи; вирусы парагриппа. 70-е годы: открытие в составе РНК-содержащих онкогенных вирусов фермента обратной транскриптазы (ревертазы). Становится реальным изучение генома РНК содержащих вирусов. Открыты вирусы: вирус гепатита B; ротавирусы, вирус гепатита A. 80-е годы. Развитие представлений о том, что возникновение опухолей может быть связано с вирусами. Компоненты вирусов, ответственные за развитие опухолей, назвали онкогенами. Открыты вирусы: иммунодефицита человека; вирус гепатита C. 5. Световой микроскоп, его устройство, разрешающая сила и работа с ним в микробиологической лаборатории. Изучение микробов в световом, люминесцентном и других микроскопах. Бактериоскопичесшй (микроскопический). С помощью микроскопа в специально приготовленных препаратах изучают форму, структуру, размер, подвижность, тинкториальные свойства. Используются различные типы микроскопов — световой, фазово-контрастный, темнопольный, люминесцентный и электронный. Под разрешающей способностью объектива микроскопа (d) понимают тот наименьший диаметр частицы, которую можно увидеть в микроскоп. У светового 200-300 нм. С помощью простых луп можно получить увеличение не более чем в 25 раз. Есть способ достигнуть больших увеличений: нужно установить две увеличивающие линзы на определенном расстоянии друг от друга. Тогда первая линза (обращенный к объекту исследования объектив) создаст увеличенное изображение, которое будет еще раз увеличено второй линзой (окуляром ), то есть общее увеличение станет результатом сложения отдельных увеличений. И именно такое, состоящее из нескольких линз, устройство сегодня мы называем микроскопом. Для того чтобы на линзы не попадал снаружи излишний свет и выдерживалось точное расстояние между ними, линзы помещаются в трубу — тубус. В современных микроскопах окуляр и объектив представляют собой системы линз. Главная роль принадлежит объективу: если он плохого качества, то окуляр не улучшает изображение, а увеличивает его дефекты. Высококачественные объективы состоят более чем из дюжины точно отшлифованных линз и стоят порядка нескольких тысяч рублей. Разумеется, важно хорошее освещение. Поэтому в микроскопы встраиваются специальные приборы — светосильные лампы накаливания, а также системы линз, которые концентрируют свет на объекте наблюдения и в зависимости от увеличения позволяют установить оптимальную яркость. Для световой микроскопии биологические объекты обычно окрашивают с целью выявления тех или иных их свойств (рис. 1). При этом ткани должны быть фиксированы, т.к. окраска выявляет определенные структуры только убитых клеток. В живой клетке краситель обособляется в цитоплазме в виде вакуоли и не прокрашивает ее структуры. Однако в световом микроскопе можно изучать и живые биологические объекты с помощью метода витальной микроскопии. В этом случае применяют темнопольный конденсор, который встраивают в микроскоп. Для исследования живых и неокрашенных биологических объектов используют также фазово-контрастную микроскопию. Широкое распространение имеет люминесцентная микроскопия. Она основана на свойстве некоторых веществ давать свечение — люминесценцию в УФ-лучах или в сине-фиолетовой части спектра. Многие биологические вещества, такие как простые белки, коферменты, некоторые витамины и лекарственные средства, обладают собственной (первичной) люминесценцией. Другие вещества начинают светиться только при добавлении к ним специальных красителей — флюорохромов (вторичная люминесценция). Флюорохромы могут распределяться в клетке диффузно либо избирательно окрашивают отдельные клеточные структуры или определенные химические соединения биологического объекта. 6. Простые и сложные методы окраски микробов. Принципы окраски по Граму, Циль-Нильсену, Нейссеру. Романовскому -Гимза, их применение. Методы окраски. Окраску мазка производят простыми или сложными методами. Простые заключаются в окраске препарата одним красителем; сложные методы (по Граму, Цилю — Нильсену и др.) включают последовательное использование нескольких красителей и имеют дифференциально-диагностическое значение. Отношение микроорганизмов к красителям расценивают как тинкториальные свойства. Существуют специальные методы окраски, которые используют для выявления жгутиков, клеточной стенки, нуклеоида и разных цитоплазматических включений. При простых методах мазок окрашивают каким-либо одним красителем, используя красители анилинового ряда (основные или кислые). Если красящий ион (хромофор) — катион, то краситель обладает основными свойствами, если хромофор - анион, то краситель имеет кислые свойства. Кислые красители — эритрозин, кислый фуксин, эозин. Основные красители — генциановый фиолетовый, кристаллический фиолетовый, метиленовый синий, основной фуксин. Преимущественно для окраски микроорганизмов используют основные красители, которые более интенсивно связываются кислыми компонентами клетки. Из сухих красителей, продающихся в виде порошков, готовят насыщенные спиртовые растворы, а из них — водно-спиртовые, которые и служат для окрашивания микробных клеток. Микроорганизмы окрашивают, наливая краситель на поверхность мазка на определенное время. Окраску основным фуксином ведут в течение 2 мин, метиленовым синим — 5—7 мин. Затем мазок промывают водой до тех пор, пока стекающие струи воды не станут бесцветными, высушивают осторожным промоканием фильтровальной бумагой и микроскопируют в иммерсионной системе. Если мазок правильно окрашен и промыт, то поле зрения совершенно прозрачно, а клетки интенсивно окрашены. Сложные методы окраски применяют для изучения структуры клетки и дифференциации микроорганизмов. Окрашенные мазки микроскопируют в иммерсионной системе. Последовательно нанести на препарат определенные красители, различающиеся по химическому составу и цвету, протравы, спирты, кислоту и др. Существуют несколько основных окрасок: по Граму, по Цилю-Нельсону, по Ауески, Нейссера, Бури-Гинса. 7. Этапы развития бактериологии. Принципы классификации бактерий. Понятие о виде. Культура. Штамм. Клон. 1.Эмпирических знаний до изобретения микроскопов 2.Морфологический период занял около двухсот лет. Левенгук в 1675г. впервые описал простейших, в 1683г.- основные формы бактерий. 3.Физиологический период (с 1875г.)- эпоха Л.Пастера и Р.Коха. Л.Пастер- изучение микробиологических основ процессов брожения и гниения, развитие промышленной микробиологии, выяснение роли микроорганизмов в кругообороте веществ в природе, открытие анаэробных микроорганизмов, разработка принципов асептики, методов стерилизации, ослабления вирулентности и получения вакцин (вакцинных штаммов). Р.Кох- метод выделения чистых культур на твердых питательных средах, способы окраски бактерий анилиновыми красителями, открытие возбудителей сибирской язвы, холеры. туберкулеза (палочки Коха), совершенствование техники микроскопии. 4.Иммунологический период. И.И.Мечников- - учение о невосприимчивости (иммунитете), разработав теорию фагоцитоза и обосновав клеточную теорию иммунитета. Одновременно накапливались данные о выработке в организме антител против бактерий и их токсинов, позволившие П.Эрлиху разработать гуморальную теорию иммунитета. И.И.Мечникову и П.Эрлиху в 1908г. была присуждена Нобелевская премия. В 1892г. Д.И.Ивановский сообщил, что возбудителем мозаичной болезни табака является фильтрующийся вирус. Эту дату можно считать днем рождения вирусологии, а Д.И.Ивановского - ее основоположником. 5. Следующим важным этапом в развитии микробиологии стало открытие антибиотиков. В 1929г. А.Флеминг открыл пенициллин и началась эра антибиотикотерапии, приведшая к революционному прогрессу медицины. 6. Современный молекулярно- генетический этап развития микробиологии, вирусологии и иммунологии начался во второй половине 20 века в связи с достижениями генетики и молекулярной биологии, созданием электронного микроскопа. Объектами изучения микробиологии являются представители трех «царств» — Procariotae, к которому относятся бактерии, Eucariotae, включающего грибы (Mycota) и простейших (Protozoa), и Vira, объединяющего вирусы. Общий признак всех микроорганизмов — очень мелкие размеры. Они невидимы простым глазом и обнаруживаются при помощи микроскопа. Величину бактерий измеряют в микрометрах (1 мм = 1000 мкм), а размеры органелл микроорганизмов выражают в нанометрах (1 мкм = 1000 нм). При электронной микроскопии используют еще более мелкие единицы — ангстремы (1 мм = 10 000 000 А). Систематика и классификация микроорганизмов с целью распределения их по группам — таксонам проводится с учетом совокупности признаков и свойств: морфологических, тинкториальных (способности окрашиваться красителями), культуральных, физиолого-биохимических, антигенных, организа¬ции генома. Дифференциальными признаками служат также подвижность, спорообразование, чувствительность к бактериофагам и др. Клон — потомство клеток микроорганизмов, полученных из одной клетки или одной споры. Это генетически идентичные и фенотипически однородные культуры. Клоны можно выде¬лить путем культивирования изолированной клетки или споры на питательной среде. При этом обычно используют несе-лективные среды и проводят на них многократные пересевы клонируемых культур. Чистая культура — это совокупность микроорганизмов од¬ного вида или варианта, полученная из одной изолированной колонии. Штамм — чистая культура, выделенная из определенного источника (организма человека, животных, окружающей среды). 8. Структура бактериальной клетки: оболочка, ядерная субстанция, цитоплазма, капсулы, споры, включения, жгутики. Химический состав бактерий. Группы бактерий. Капсула — наружный защитный слой. Капсула расположена снаружи клеточной стенки бактерии. Ее толщина и химический состав неодинаковы у бактерий различных видов. Иногда капсула в несколько раз превышает по толщи¬не клетку. В некоторых случаях она очень тонкая. В зависи¬мости от толщины и консистенции различают макро- и микрокапсулы и слизистые чехлы. Обычно капсулы представлены полисахаридами. Капсулы выполняют ряд функций. Они защищают клетку от неблагоприятных внешних воздействий. С их помощью не-которые бактерии более прочно присоединяются к субстрату. Например, постоянный обитатель ротовой полости Streptococcus mutans приклеивается с помощью капсулы к поверхности зубов и образует «бляшки». Клеточная стенка — поверхностная структура. Она пред-ставляет собой внешнюю оболочку, окружающую бактерии. Выполняет функции защиты от внешней среды, поддерживает и сохраняет форму клетки и участвует в транспорте питатель¬ных веществ и продуктов метаболизма. Структура и химический состав клеточной стенки постоян¬ны для определенного вида и служат дифференциальными признаками. По химическому составу клеточная стенка — сложный био-гетерополимер. Основной компонент в ней представлен пептидогликаном. Цитоплазматическая мембрана прилегает к клеточной стен¬ке с внутренней стороны и отграничивает цитоплазму. Ее разрушение влечет за собой гибель клетки. У прокариотных мик¬роорганизмов мембрана выполняет защитную, метаболическую функции, участвует в процессе деления клеток и в спо-рообразовании. Цитоплазма — коллоидная система, состоящая из белков, углеводов, жиров, минеральных веществ, ДНК и РНК. Генетический материал бактериальной клетки представлен ДНК. Его называют также геномом клетки, ядерным аппара¬том, нуклеоидом. Жгутики — органоиды движения. Они состоят из базально-го тела, локализованного в цитоплазматической мембране, крюка и нити. Жгутики проходят через клеточную стенку и располагаются снаружи клетки в виде нитей. Спора образуется у бацилл, представляет стадию покоя. Одна клетка превращается в одну спору. Спорообразование не является способом размножения, это приспособление для сохранения вида в неблагоприятных условиях внешней среды. 9. Морфология и ультраструктура грибов. Систематика грибов. Культуральные свойства Патогенные представители. Грибы относятся к царству Fungi (Mycetes, Mycota). Это многоклеточные или одноклеточные нефотосинтезирующие (бесхлорофильные) эукариотические микроорганизмы с клеточной стенкой. Грибы имеют ядро с ядерной оболочкой, цитоплазму с органеллами, цитоплазматическую мембрану и многослойную, ригидную клеточную стенку, состоящую из нескольких типов полисахаридов, а также белка, липидов и др. Некоторые грибы образуют капсулу. Цитоплазматическая мембрана содержит гликопротеины, фосфолипиды и эргостеролы. Грибы являются грамположительными микробами, вегетативные клетки — некислотоустойчивые. Грибы состоят из длинных тонких нитей (гиф), сплетающихся в грибницу, или мицелий. Гифы низших грибов — фикомицетов — не имеют перегородок. У высших грибов — эуми-цетов — гифы разделены перегородками; их мицелий многоклеточный. Различают гифальные и дрожжевые формы грибов. Гифальные (плесневые) грибы образуют ветвящиеся тонкие нити (гифы), сплетающиеся в грибницу, или мицелий (плесень). Гифы, врастающие в питательный субстрат, называются вегетативными гифами (отвечают за питание гриба), а растущие над поверхностью субстрата — воздушными или репродуктивными гифами (отвечают за бесполое размножение). Гифы низших грибов не имеют перегородок. Они представлены многоядерными клетками и называются ценоцитными. Гифы высших грибов разделены перегородками, или септами с отверстиями. Дрожжевые грибы (дрожжи), в основном, имеют вид отдельных овальных клеток (одноклеточные грибы). По типу полового размножения они распределены среди высших грибов — аскомицет и базидиомицет. При бесполом размножении дрожжи образуют почки или делятся, что приводит к одноклеточному росту. Могут образовывать псевдогифы и ложный мицелий (псевдомицелий) в виде цепочек удлиненных клеток — «сарделек». Грибы, аналогичные дрожжам, но не имеющие полового способа размножения, называют дрожжеподобными. Они размножаются только бесполым способом — почкованием или делением. Грибы размножаются спорами половым и бесполым способами, а также вегетативным путем (почкование или фрагментация гиф). Грибы, размножающиеся половым и бесполым путем, относятся к совершенным. Несовершенными называют грибы, у которых отсутствует или еще не описан половой путь размножения. Бесполое размножение осуществляется у грибов с помощью эндогенных спор, созревающих внутри круглой структуры — спорангия, и экзогенных спор — конидий, формирующихся на кончиках плодоносящих гиф. Типы грибов. Выделяют 3 типа грибов, имеющих половой способ размножения (так называемые совершенные грибы): зигомицеты (Zygomycota), аскомицеты (Ascomycota) и базидиомицеты (Basidiomycota). Отдельно выделяют условный, формальный тип/группу грибов — дейтеромицеты (Deiteromycota), у которых имеется только бесполый способ размножения (так называемые несовершенные грибы). Патогенность. Грибы рода Trichophyton, Microsporum, Achorion вызывают поражения кожи, волос, ногтей. Серьезную угрозу для жизни и здоровья людей представляют возбудители глубоких микозов (роды Coccidioides, Hystoplasma) 10. Морфология простейших. Принципы классификации. Патогенные для человека протисты. Простейшие — эукариотические одноклеточные микроорганизмы, составляющие подцарство Protozoa царства животных (Animalia). Простейшие включают 7 типов, из которых четыре типа (Sarcomastigophora, Apicomplexa, Ciliophora, Microspora) имеют представителей, вызывающих заболевания у человека. Размеры простейших колеблются в среднем от 5 до 30 мкм. Снаружи простейшие окружены мембраной (пелликулой) — аналогом цитоплазматической мембраны клеток животных. Некоторые простейшие имеют опорные фибриллы. Цитоплазма и ядро соответствуют по строению эукариотическим клеткам: цитоплазма состоит из эндоплазматического ретикулума, митохондрий, лизосом, многочисленных рибосом и др.; ядро имеет ядрышко и ядерную оболочку. Передвигаются простейшие посредством жгутиков, ресничек и путем образования псевдоподий. Простейшие могут питаться в результате фагоцитоза или образования особых структур. Многие простейшие при неблагоприятных условиях образуют цисты — покоящиеся стадии, устойчивые к изменению температуры, влажности и др. Простейшие окрашиваются по Романовскому—Гимзе (ядро — красного, цитоплазма — синего цвета). Тип Sarcomastigophora. Подтип Mastigophora (жгутиконосцы) включает следующих патогенных представителей: трипаносому — возбудителя африканского трипаносомоза (сонная болезнь); лейшмании — возбудителей кожной и висцеральной форм лейшманиозов; трихомонады, передающиеся половым путем и паразитирующие в толстой кишке человека; лямблию — возбудителя лямблиоза. Эти простейшие характеризуются наличием жгутиков: один — у лейшмании, четыре свободных жгутика и короткая ундулирующая мембрана — у три-хомонад. К подтипу Sarcodina (саркодовые) относится дизентерийная амеба — возбудитель амебной дизентерии человека. Морфологически сходна с ней непатогенная кишечная амеба. Эти простейшие передвигаются путем образования псевдоподий. Питательные вещества захватываются и погружаются в цитоплазму клеток. Половой путь размножения у амеб отсутствует. При неблагоприятных условиях они образуют цисту. Тип Apicomplexa. В классе Sporozoa (споровики) патогенными представителями являются возбудители токсоплазмоза, кокцидиоза, саркоцистоза и малярии. Жизненный цикл возбудителей малярии характеризуется чередованием полового размножения (в организме комаров Anopheles) и бесполого (в клетках тканей и эритроцитах человека они размножаются путем множественного деления). Токсоплазмы имеют форму полулуний. Токсоплазмозом человек заражается от животных. Токсоплазмы могут передаваться через плаценту и поражать центральную нервную систему и глаза плода. Тип Ciliophora. Патогенный представитель — возбудитель ба-лантидиаза — поражает толстый кишечник человека. Балантидии имеют многочисленные реснички и поэтому подвижны. Тип Microsporaвключает микроспоридии — маленькие (0,5—10 мкм) облигатные внутриклеточные паразиты, широко распространенные среди животных и вызывающие у ослабленных людей диарею и гнойно-воспалительные заболевания. 11. Особенности морфологии и биологии вирусов. Принципы классификации. Вирусы — мельчайшие микробы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только ДНК или РНК. Относятся к царству Vira. Являясь облигатными внутриклеточными паразитами, вирусы размножаются в цитоплазме или ядре клетки. Они — автономные генетические структуры. Отличаются особым — разобщенным (дисъюнктивным) способом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы. Сформированная вирусная частица называется вирионом. Морфологию и структуру вирусов изучают с помощью электронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы. Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц — капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид. Сложные, или оболочечные, вирусы снаружи капсида окружены ли-попротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок. Тип симметрии. Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа). Включения — скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазмати-ческие включения — тельца Гварниери; вирусы герпеса и аденовирусы — внутриядерные включения. Размеры вирусов определяют с помощью электронной микроскопии, методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным — натуральной оспы (около 350 нм). Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. имеют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) геномом. Минус-нить РНК этих вирусов выполняет только наследственную функцию. Вирусы поражают позвоночных и беспозвоночных животных, а также растения и бактерии. Являясь основными возбудителями инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирус краснухи, цитомега ловирус и др.), поражая плод человека. Они могут приводить к постинфекционным осложнениям — развитию миокардитов, панкреатитов, иммунодефицитов и др. Кроме обычных вирусов, известны и так называемые неканонические вирусы — прионы — белковые инфекционные частицы, являющиеся агентами белковой природы, имеющие вид фибрилл размером 10—20x100—200 нм. Прионы, по-видимому, являются одновременно индукторами и продуктами автономного гена человека или животного и вызывают у них энцефалопатии в условиях медленной вирусной инфекции (болезни Крейтц-фельдта—Якоба, куру и др.). Другими необычными агентами, близкими к вирусам, являются вироиды — небольшие молекулы кольцевой, суперспи-рализованной РНК, не содержащие белка, вызывающие заболевания у растений. 12. Структура и химический состав вирусов. Вирусы — мельчайшие микробы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только ДНК или РНК. Относятся к царству Vira. Являясь облигатными внутриклеточными паразитами, вирусы размножаются в цитоплазме или ядре клетки. Они — автономные генетические структуры. Отличаются особым — разобщенным (дисъюнктивным) способом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы. Сформированная вирусная частица называется вирионом. Морфологию и структуру вирусов изучают с помощью электронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы. Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц — капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид. Сложные, или оболочечные, вирусы снаружи капсида окружены ли-попротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок. Капсид и суперкапсид защищают вирионы от влияния окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) с клетками, определяют антигенные и иммуногенные свойства вирионов. Внутренние структуры вирусов называются сердцевиной. Тип симметрии. Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа). Включения — скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазмати-ческие включения — тельца Гварниери; вирусы герпеса и аденовирусы — внутриядерные включения. Размеры вирусов определяют с помощью электронной микроскопии, методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным — натуральной оспы (около 350 нм). Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. имеют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) геномом. Минус-нить РНК этих вирусов выполняет только наследственную функцию. Геном вирусов способен включаться в состав генетического аппарата клетки в виде провируса, проявляя себя генетическим паразитом клетки. Нуклеиновые кислоты некоторых вирусов (вирусы герпеса и др.) могут находиться в цитоплазме инфицированных клеток, напоминая плазмиды. |