ПОСТ ЛЕКЦИИ(1). Электрические цепи постоянного тока и методы их расчета электрическая цепь и ее элементы
Скачать 0.52 Mb.
|
1 2 ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА И МЕТОДЫ ИХ РАСЧЕТА 1. Электрическая цепь и ее элементы В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы. Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении. Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения. Электрическая схема реальной электрической цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 2.1. Рис. 2.1. Электрическая схема реальной электрической цепи Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы. 1. Источники электрической энергии (питания). Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства). 2. Потребители электрической энергии. Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой. 3. Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает. Все элементы цепи охвачены одним электромагнитным процессом. В электрической схеме на рис. 2.1 электрическая энергия от источника ЭДС E, обладающего внутренним сопротивлением r0, с помощью вспомогательных элементов цепи передаются через регулировочный реостат R к потребителям (нагрузке): электрическим лампочкам EL1 и EL2. 2. Основные понятия и определения для электрической цепи Для расчета и анализа реальная электрическая цепь представляется графически в виде расчетной электрической схемы (схемы замещения). В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают. Источник питания показывается как источник ЭДС E с внутренним сопротивлением r0, реальные потребители электрической энергии постоянного тока заменяются их электрическими параметрами: активными сопротивлениями R1, R2, …, Rn. С помощью сопротивления R учитывают способность реального элемента цепи необратимо преобразовывать электроэнергию в другие виды, например, тепловую или лучистую. При этих условиях схема на рис. 2.1 может быть представлена в виде расчетной электрической схемы (рис. 2.2), в которой есть источник питания с ЭДС E и внутренним сопротивлением r0, а потребители электрической энергии: регулировочный реостат R, электрические лампочки EL1 и EL2 заменены активными сопротивлениями R, R1 и R2. Рис. 2.2. Расчетная электрическая схема Источник ЭДС на электрической схеме (рис. 2.2) может быть заменен источником напряжения U, причем условное положительное направление напряжения U источника задается противоположным направлению ЭДС. При расчете в схеме электрической цепи выделяют несколько основных элементов. Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Схема на рис. 2.2 имеет три ветви: ветвь bma, в которую включены элементы r0, E, R и в которой возникает ток I; ветвь ab с элементом R1 и током I1; ветвь anb с элементом R2 и током I2. Узел электрической цепи (схемы) – место соединения трех и более ветвей. В схеме на рис. 2.2 – два узла a и b. Ветви, присоединенные к одной паре узлов, называют параллельными. Сопротивления R1 и R2 (рис. 2.2) находятся в параллельных ветвях. Контур – любой замкнутый путь, проходящий по нескольким ветвям. В схеме на рис. 2.2 можно выделить три контура: I – bmab; II – anba; III – manbm, на схеме стрелкой показывают направление обхода контура. Условные положительные направления ЭДС источников питания, токов во всех ветвях, напряжений между узлами и на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На схеме (рис. 2.2) стрелками укажем положительные направления ЭДС, напряжений и токов: а) для ЭДС источников – произвольно, но при этом следует учитывать, что полюс (зажим источника), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу; б) для токов в ветвях, содержащих источники ЭДС – совпадающими с направлением ЭДС; во всех других ветвях произвольно; в) для напряжений – совпадающими с направлением тока в ветви или элемента цепи. Все электрические цепи делятся на линейные и нелинейные. Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, например электропечь. Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке. Следовательно, в линейной электрической цепи все элементы – линейные, а нелинейной называют электрическую цепь, содержащую хотя бы один нелинейный элемент. 3. Основные законы цепей постоянного тока Расчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи. Закон Ома для участка цепи. Соотношение между током I, напряжением UR и сопротивлением R участка аb электрической цепи (рис. 2.3) выражается законом Ома Рис. 2.3. Электрическая схема В этом случае UR = RI – называют напряжением или падением напряжения на резисторе R, а I – током в резисторе R. При расчете электрических цепей иногда удобнее пользоваться не сопротивлением R, а величиной обратной сопротивлению, т.е. электрической проводимостью: В этом случае закон Ома для участка цепи запишется в виде: I = gU. Закон Ома для всей цепи. Этот закон определяет зависимость между ЭДС Е источника питания с внутренним сопротивлением r0 (рис. 2.3), током I электрической цепи и общим эквивалентным сопротивлением RЭ = r0 + R всей цепи: Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии. Первый закон Кирхгофа. В любом узле электрической цепи алгебраическая сумма токов равна нулю где m – число ветвей подключенных к узлу. При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 2.2) I − I1 − I2 = 0. Второй закон Кирхгофа. В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках где n – число источников ЭДС в контуре; m – число элементов с сопротивлением Rк в контуре; Uк = RкIк – напряжение или падение напряжения на к-том элементе контура. Для схемы (рис. 2.2) запишем уравнение по второму закону Кирхгофа: E = UR + U2.. Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контура, включая источники ЭДС, равна нулю При записи уравнений по второму закону Кирхгофа необходимо: 1. задать условные положительные направления ЭДС, токов и напряжений; 2. выбрать направление обхода контура, для которого записывается уравнение; 3. записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны. Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. 2.2): контур I: E = RI + R1I1 + r0I, контур II: R1I1 + R2I2 = 0, контур III: E = RI + R2I2 + r0I. В действующей цепи электрическая энергия источника питания преобразуется в другие виды энергии. На участке цепи с сопротивлением R в течение времени t при токе I расходуется электрическая энергия W = RI2t. Скорость преобразования электрической энергии в другие виды представляет электрическую мощность Из закона сохранения энергии следует, что мощность источников питания в любой момент времени равна сумме мощностей, расходуемых на всех участках цепи
Соотношение (2.1) называют уравнением баланса мощностей. При составлении уравнения баланса мощностей следует учесть, что если действительные направления ЭДС и тока источника совпадают, то источник ЭДС работает в режиме источника питания, и произведение E I подставляют в (2.1) со знаком плюс. Если не совпадают, то источник ЭДС работает в режиме потребителя электрической энергии, и произведение E I подставляют в (2.1) со знаком минус. Для цепи, показанной на рис. 2.2 уравнение баланса мощностей запишется в виде: EI = (r0 + R) I2+ R1I12 + R2I22. При расчете электрических цепей используются определенные единицы измерения. Электрический ток измеряется в амперах (А); напряжение – в вольтах (В); сопротивление – в омах (Ом); мощность – в ваттах (Вт); электрическая энергия – ватт-час (Вт-час); проводимость – в сименсах (См). Кроме основных единиц используют более мелкие и более крупные единицы измерения: миллиампер (1 мA = 10–3 А), килоампер (1 кA = 103 А), милливольт (1 мВ = 10–3В), киловольт (1 кВ = 103 В), килоом (1 кОм = 10 3 Ом), мегаом (1 МОм = 10 6 Ом), киловатт (1 кВт = 10 3 Вт), киловатт-час (1 кВт-час = 103 ватт-час). 4. Способы соединения сопротивлений и расчет эквивалентного сопротивления электрической цепи Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рис. 2.5, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа. 2.4.1. Электрическая цепь с последовательным соединением элементов Последовательным называют такое соединение элементов цепи, при котором во всех включенных в цепь элементах возникает один и тот же ток I (рис. 2.4). На основании второго закона Кирхгофа общее напряжение U всей цепи равно сумме напряжений на отдельных участках: U = U1 + U2 + U3 или RэквI = R1I + R2I + R3I, откуда следует Rэкв = R1 + R2 + R3.
Таким образом, при последовательном соединении элементов цепи общее эквивалентное сопротивление цепи равно арифметической сумме сопротивлений отдельных участков. Следовательно, цепь с любым числом последовательно включенных сопротивлений можно заменить простой цепью с одним эквивалентным сопротивлением Rэкв (рис. 2.5). После этого расчет цепи сводится к определению тока I всей цепи по закону Ома I=U/ Rэкв, и по вышеприведенным формулам рассчитывают падение напряжений U1, U2, U3 на соответствующих участках электрической цепи (рис. 2.4). Недостаток последовательного включения элементов заключается в том, что при выходе из строя хотя бы одного элемента, прекращается работа всех остальных элементов цепи. 2.4.2. Электрическая цепь с параллельным соединением элементов Параллельным называют такое соединение, при котором все включенные в цепь потребители электрической энергии, находятся под одним и тем же напряжением (рис. 2.6). Рис. 2.6. Параллельное соединение элементов В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей: I = I1 + I2 + I3, т.е., откуда следует, что
В том случае, когда параллельно включены два сопротивления R1 и R2, они заменяются одним эквивалентным сопротивлением Из соотношения (2.2), следует, что эквивалентная проводимость цепи равна арифметической сумме проводимостей отдельных ветвей: gэкв = g1 + g2 + g3. По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается. Напряжение в электрической цепи с параллельно соединенными сопротивлениями U = RэквI = R1I1 = R2 I2= R3I3. Отсюда следует, что т.е. ток в цепи распределяется между параллельными ветвями обратно пропорционально их сопротивлениям. По параллельной схеме включения работают в номинальном режиме потребители любой мощности, рассчитанные на одно и то же напряжение. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных. Поэтому эта схема является основной схемой подключения потребителей к источнику электрической энергии. 2.4.3. Электрическая цепь со смешанным соединением элементов Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных сопротивлений. Для цепи, представленной на рис. 2.7, расчет эквивалентного сопротивления начинается с конца схемы. Для упрощения расчетов примем, что все сопротивления в этой схеме являются одинаковыми: R1=R2=R3=R4=R5=R. Рис. 2.7. Смешанное соединение элементов Сопротивления R4 и R5 включены параллельно, тогда сопротивление участка цепи cd равно: В этом случае исходную схему (рис. 2.7) можно представить в следующем упрощенном виде (рис. 2.8): Рис. 2.8. Упрощенная схема 1 На схеме (рис. 2.8) сопротивление R3 и Rcd соединены последовательно, и тогда сопротивление участка цепи ad равно: Тогда схему (рис. 2.8) можно представить в упрощенном варианте 2 (рис.2.9). На схеме (рис. 2.9) сопротивление R2 и Rad соединены параллельно, тогда сопротивление участка цепи аb равно Рис. 2.9. Упрощенная схема 2 Схему (рис. 2.9) можно представить в упрощенном варианте 3 (рис. 2.10), где сопротивления R1 и Rab включены последовательно. Тогда эквивалентное сопротивление исходной схемы (рис. 2.7) будет равно: В результате преобразований исходная схема (рис. 2.7) представлена в виде схемы (рис. 2.11) с одним сопротивлением Rэкв. Расчет токов и напряжений для всех элементов схемы можно произвести по законам Ома и Кирхгофа.
2.4.4. Соединение элементов электрической цепи по схемам «звезда» и «треугольник» В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 2.12). Сопротивления R12, R13, R24, R34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–2 называется измерительной диагональю моста.
В мостовой схеме сопротивления R13, R12, R23 и R24, R34, R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24 R34 R23 звездой R2 R3 R4 (рис. 2.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям: Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника: После проведенных преобразований (рис. 2.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 2.12) 5. Источник ЭДС и источник тока в электрических цепях При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением величины внутреннего сопротивления r0 заменяют расчетным эквивалентным источником ЭДС или источником тока. Рис. 2.14. Схема с источником ЭДС Источник ЭДС (рис. 2.14) имеет внутреннее сопротивление r0, равное внутреннему сопротивлению реального источника. Стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС. Для данной цепи запишем соотношение по второму закону Кирхгофа E = U + r0I или U = E − r0I. Зависимость напряжения U на зажимах реального источника от тока I определяется его вольт-амперной или внешней характеристикой (рис. 2.15). Уменьшение напряжения источника U при увеличении тока нагрузки I объясняется падением напряжения ΔU=Ir0 на его внутреннем сопротивлении r0.
У идеального источника ЭДС внутреннее сопротивление r0 << Rн (приближенно r0 ≈0). В этом случае его вольт-амперная характеристика представляет собой прямую линию (рис. 2.16), следовательно, напряжение U на его зажимах постоянно (U=E) и не зависит от величины сопротивления нагрузки Rн. Рис. 2.17. Схема с источником тока Источник тока, заменяющий реальный источник электрической энергии, характеризуется неизменным по величине током Iк, равным току короткого замыкания источника ЭДС Iк =E/ r0, и внутренним сопротивление r0, включенным параллельно (рис. 2.17). Стрелка в кружке указывает положительное направление тока источника. Для данной цепи запишем соотношение по первому закону Кирхгофа Iк = I0 + I;. I0 = U/r0. В этом случае вольт-амперная (внешняя) характеристика I(U) источника тока определится соотношением I = Iк − I0 = Iк − U/r0 и представлена на рис. 2.18.
Уменьшение тока нагрузки I при увеличении напряжения U на зажимах ab источника тока, объясняется увеличением тока I0, замыкающегося в цепи источника тока. В идеальном источнике тока r0>>Rн. В этом случае можно считать, что при изменении сопротивления нагрузки Rн потребителя I0≈0, а I≈Iк. Тогда вольт-амперная характеристика I(U) идеального источника тока представляет прямую линию, проведенную параллельно оси абсцисс на уровне I = Iк = E/r0 (рис. 2.19). При сравнении внешних характеристик источника ЭДС (рис. 2.15) и источника тока (рис. 2.18) следует, что они одинаково реагируют на изменение величины сопротивления нагрузки. Покажем, что в обоих случаях ток I в нагрузке определяется одинаковым соотношением. Ток в нагрузке Rн для схем источника ЭДС (рис. 2.14) и источника тока (рис. 2.17) одинаков и равен Для схемы рис. 2.14 это следует из закона Ома, т.к. при последовательном соединении сопротивления r0 и Rн складываются. В схеме рис. 2.17 ток распределяется обратно пропорционально сопротивлениям r0 и Rн двух параллельных ветвей. Ток в нагрузке Rн т.е. совпадает по величине с током при подключении нагрузки к источнику ЭДС. Следовательно, схема источника тока (рис. 2.17) эквивалентна схеме источника ЭДС (рис. 2.14) в отношении энергии, выделяющейся в сопротивлении нагрузки Rн, но не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания. Каким из двух эквивалентных источников питания пользоваться, не играет существенной роли. Однако на практике, особенно при расчете электротехнических устройств, чаще используется в качестве источника питания источник ЭДС с внутренним сопротивлением r0 и величиной электродвижущей силы Е. В тех случаях, когда номинальное напряжение или номинальный ток и мощность источника электрической энергии оказываются недостаточными для питания потребителей, вместо одного используют несколько источников. Существуют два основных способа соединения источников питания: последовательное и параллельное. Последовательное включение источников питания (источников ЭДС) применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС (рис. 2.20). Для этой цепи на основании второго закона Кирхгофа можно записать E1 + E2 + E3 = (r01 + r02 + r03 + Rн) I. Откуда Рис. 2.20. Последовательное включение источников ЭДС Таким образом, электрическая цепь на рис. 2.20 может быть заменена цепью с эквивалентным источником питания (рис. 2.21), имеющим ЭДС Eэ и внутреннее сопротивление rэ. При параллельном соединении источников (рис. 2.22) соединяются между собой положительные выводы всех источников, а также их отрицательные выводы. Характерным для параллельного соединения является одно и то же напряжение U на выводах всех источников. Для электрической цепи на рис. 2.22 можно записать следующие уравнения: I = I1 + I2 + I3; P = P1 + P2 + P3 = UI1 + UI2 + UI3 = UI.
Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями. 6. Режимы работы электрической цепи При подключении к источнику питания различного количества потребителей или изменения их параметров будут изменяться величины напряжений, токов и мощностей в электрической цепи, от значений которых зависит режим работы цепи и ее элементов. Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников (рис. 2.23). Рис. 2.23. Схема соединения в виде двухполюсников Двухполюсником называют цепь, которая соединяется с внешней относительно нее частью цепи через два вывода а и b – полюса. Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит. Для расчета цепей с двухполюсниками реальные активные и пассивные элементы цепи представляются схемами замещения. Схема замещения пассивного двухполюсника П представляется в виде его входного сопротивления Схема замещения активного двухполюсника А представляется эквивалентным источником с ЭДС Eэ и внутренним сопротивлением r0э, нагрузкой для которого является входное сопротивление пассивного двухполюсника Rвх = Rн. Режим работы электрической цепи (рис. 2.23) определяется изменениями параметров пассивного двухполюсника, в общем случае величиной сопротивления нагрузки Rн. При анализе электрической цепи рассматривают следующие режимы работы: холостого хода, номинальный, короткого замыкания и согласованный. Работа активного двухполюсника под нагрузкой Rн определяется его вольт-амперной (внешней) характеристикой, уравнение которой для данной цепи запишется в виде
Эта вольт-амперная характеристика строится по двум точкам 1 и 2 (рис. 2.24), соответствующим режимам холостого хода и короткого замыкания. Рис. 2.24. Внешняя характеристика 2.6.1. Режим холостого хода В этом режиме с помощью ключа SA нагрузка Rн отключается от источника питания (рис. 2.23). В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения (2.14) напряжение на зажимах ab становится равным ЭДС Eэ и называется напряжением холостого хода Uхх U = Uхх = Eэ. 2.6.2. Режим короткого замыкания В этом режиме ключ SA в схеме электрической цепи (рис. 2.23) замкнут, а сопротивление Rн=0. В этом случае напряжение U на зажимах аb становится равным нулю, т.к. U = RнI, а уравнение (2.3) вольт-амперной характеристики можно записать в виде Значение тока короткого замыкания Iкз соответствует т.2 на вольт-амперной характеристике (рис. 2.24). Анализ этих двух режимов показывает, что при расчете электрических цепей параметры активного двухполюсника Eэ и r0э могут быть определены по результатам режимов холостого хода и короткого замыкания: Eэ= Uхх и При изменении тока в пределах 0 ≤I ≤Iк активной двухполюсник (эквивалентный источник) отдает энергию во внешнюю цепь (участок I вольт-амперной характеристики на рис. 2.24). При токе I<0 (участок II) источник получает энергию из внешней цепи, т.е. работает в режиме потребителя электрической энергии. Это произойдет, если к зажимам аb двухполюсника присоединена внешняя цепь с источниками питания. При напряжении U<0 (участок III) резисторы активного двухполюсника потребляют энергию источников из внешней цепи и самого активного двухполюсника. 2.6.3. Номинальный режим Номинальный режим электрической цепи обеспечивает технические параметры как отдельных элементов, так и всей цепи, указанные в технической документации, в справочной литературе или на самом элементе. Для разных электротехнических устройств указывают свои номинальные параметры. Однако три основных параметра указываются практически всегда: номинальное напряжение Uном, номинальная мощность Рном и номинальный ток Iном. Работа активного двухполюсника под нагрузкой в номинальном режиме определяется уравнением (2.3), записанном для номинальных параметров Uном = Eэ − r0эIном. На вольт-амперной характеристике (рис. 2.24) это уравнение определяется точкой 3 с параметрами Uном и Iном. 2.6.4. Согласованный режим Согласованный режим электрической цепи обеспечивает максимальную передачу активной мощности от источника питания к потребителю. Определим параметры электрической цепи (рис. 2.23), обеспечивающие получение согласованного режима. При подключении нагрузки Rн к активному двухполюснику (рис. 2.23) в ней возникает ток При этом на нагрузке выделится активная мощность
Определим соотношение между сопротивлением нагрузки Rн и внутренним сопротивлением r0э эквивалентного источника ЭДС, при котором в сопротивлении нагрузки Rн выделяется максимальная мощность при неизменных значениях Eэ и r0э. С этой целью определим первую производную Р по Rн и приравняем ее к нулю: Так как выражение в знаменателе – конечное, то, отбрасывая не имеющее физического смысла решение Rн = -r0э, получим, что значение сопротивления нагрузки, согласованное с сопротивлением источника
Можно найти вторую производную и убедиться в том, что она отрицательна поэтому соотношение (2.5) соответствует максимуму функции P = F(Rн). Подставив (2.5) в (2.4), получим значение максимальной мощности, которая может быть выделена в нагрузке Rн Полезная мощность, выделяемая в нагрузке, определяется уравнением (2.4). Полная активная мощность, выделяемая активным двухполюсником, Коэффициент полезного действия если Rн = r0э, то КПД=0,5. Для мощных электротехнических устройств такое низкое значение КПД недопустимо. Но в электронных устройствах и схемах, где величина Р измеряется в милливаттах, с низким КПД можно не считаться, поскольку в этом режиме обеспечивается максимальная передача мощности на нагрузку. 7. Расчет электрических цепей с использованием законов 0>0> 1 2 |