Электровоз
Скачать 57.43 Kb.
|
Электрово́з — неавтономный локомотив, приводимый в движение установленными на нём тяговыми электродвигателями, питаемыми от внешних источников электроэнергии через тяговые подстанции по контактной сети (в отдельных случаях — от бортовых аккумуляторов). При классификации электровозов можно выделить следующие признаки[1] По роду службы — пассажирские (например, ЧС2, ЧС4, ЧС7, ЧС8, ЭП1, ЭП20), грузовые (например, ВЛ10, ВЛ15, ВЛ80, ВЛ85, 2ЭС6, Э5К, 2ЭС10), грузопассажирские (в Европе данный тип электровозов широко распространён, на постсоветском же пространстве это обычно модификации грузовых электровозов, имеющие электропневматический тормоз и оборудование для электроотопления поезда, или пассажирских с пониженным передаточным числом редуктора), маневровые (ВЛ41, ВЛ26) и промышленные (например, ЕЛ21, ЭК14). Из последней группы часто выделяют шахтные электровозы, то есть предназначенные для перевозки различных грузов по подземным рельсовым путям. Различие между типами электровозов по роду службы характеризуется силой тяги и конструктивной скоростью движения. Пассажирские электровозы имеют меньшую силу тяги и высокую скорость движения, грузовые — большую силу тяги и пониженную скорость движения. В некоторых сериях электровозов это достигалось изменением передаточного отношения зубчатой передачи. Маневровые электровозы обычно имеют меньшую мощность и большинство из них снабжается дополнительным источником тока — аккумуляторной батареей или дизель-генератором — для движения по неэлектрифицированным путям. По типу питания: контактные — самый распространённый тип электровозов, получающих питание через токоприёмник от расположенной вдоль путей контактной сети (контактного провода или рельса). Эти электровозы, в свою очередь, различаются по виду токоприёмников и расположению контактной сети. Наиболее распространённым видом токосъёма на всех железных дорогах, кроме метрополитена, является верхний токосъём с токоприёмником пантографного типа. На ряде промышленных линий, где подвешивание контактного провода сверху невозможно (например, из-за необходимости насыпания грузов) применяется верхний боковой или боковой токосъём, в этом случае чаще всего токоприёмники имеют форму штанг или реек. В большинстве метрополитенов и на некоторых городских железных дорогах применяется нижний боковой или нижний межрельсовый токосъём, в этом случае в роли контактной сети используется контактный рельс, а на электровозе устанавливается рельсовый токоприёмник, как правило, имеющий форму полоза. аккумуляторные — не имеют токосъёмных устройств и питаются только от собственной аккумуляторной батареи, подзаряжаемой на станциях или в депо. Такие электровозы применяются в основном на шахтах и промышленных железных дорогах, где токоведущие части не могут применяться или представляют опасность по условиям эксплуатации, а также иногда в качестве маневровых локомотивов (например, электровозы ЛАМ). контактно-аккумуляторные — оборудованы токоприёмниками и аккумуляторными батареями и могут работать как от контактной сети, одновременно подзаряжая аккумуляторные батареи, так и от своих аккумуляторов при следовании на неэлектрифицированном участке. Используются в основном в шахтах и в качестве маневровых локомотивов, а также для служебных целей в некоторых метрополитенах. бесконтактные — наименее распространённый тип электровозов, применяемых в основном в шахтах. Вдоль путей прокладывается индукционная шина, в которую подаётся ток высокой частоты, и за счёт электромагнитной индукции вокруг неё создаётся переменное магнитное поле, а на электровозе устанавливается катушка, в которой этим полем индуцируется ток тяговых электродвигателей. По роду тока питания — электровозы постоянного тока, в которых питающее напряжение подаётся на тяговое оборудование, и переменного тока, в которых оно понижается и выпрямляется перед подачей на тяговое оборудование. Электровозы каждого из родов тока делятся на множество классов в зависимости от величины напряжения, а в случае переменного тока — частоты. Например, в России на магистральных железных дорогах используются два типа: переменного тока — 25 кВ, 50 Гц (например, ВЛ80, ЧС4, ВЛ85, ЧС8, ВЛ41, Э5К, ЭП1, 2ЭС5) и постоянного тока — 3 кВ (например, ВЛ10, ЧС2, ЧС7, ВЛ15, ВЛ26, 2ЭС6, ЭП2К, 2ЭС4К)[1]. В других странах мира, в зависимости от принятых стандартов в системе питания электрифицированных железных дорог, применяются электровозы с другими системами питания, например, переменного тока напряжением 15 кВ, 16 2/3 Гц. Для эксплуатации на участках с разным типом электрификации существуют многосистемные (двух-, трёх- и четырёхсистемные) электровозы (например, в России используются двухсистемные электровозы ВЛ82, ЭП10, ЭП20). Для эксплуатации на промышленных предприятиях, в карьерах и рудниках выпускаются электровозы с другими типами электрификации, например в России используются электровозы постоянного тока с напряжением питания 1500 В, 550 В, 250 В, переменного тока 10 кВ. Существуют также электровозы трёхфазного переменного тока, получающие питание от трёхфазной контактной сети и применяемые в основном на промышленных предприятиях (на железных дорогах общего пользования такие электровозы не нашли широкого применения ввиду сложности контактной сети). Различие в применяемом токе и напряжении в первую очередь определяет различие в конструкции тяговых преобразователей и схеме электрической цепи, а также влияет на тип применяемых тяговых двигателей, вспомогательных машин и аппаратов[4]. По системе управления тяговыми электродвигателями: Реостатно-контакторная система управления. Ток двигателей изменяется механическими переключениями в силовой цепи. На электровозах советского производства с такой системой переключения осуществляются групповым переключателем с пневматическим или электрическим приводом. На электровозах российского производства начала применяться усовершенствованная версия РКСУ, где переключения осуществляются независимыми контакторами с электронным управлением, также иногда выделяемая в отдельную, контакторно-транзисторную систему управления. Наиболее простая и дешёвая система регулирования, имеющая, однако, ряд серьёзных недостатков, такие как возможность питать только коллекторные тяговые электродвигатели, невозможность плавного изменения мощности двигателей (существенность этого недостатка может быть значительно уменьшена при использовании независимого возбуждения ТЭД от электронного преобразователя), высокие энергопотери в реостатах (уменьшены в современных электровозах с независимым возбуждением ТЭД, см. 2ЭС6). Тиристорно-импульсная система управления. Ток двигателей регулируется импульсно при помощи тиристоров, что исключает пускотормозные реостаты и обеспечивает плавное регулирование мощности. На всех серийных советских и российских электровозах с ТИСУ (ВЛ80Р, ВЛ85, ВЛ65, ЭП1, Э5К) эта система выполнена в виде выпрямительно-инверторных преобразователей (ВИП), регулирующих напряжение по зонно-фазовой схеме, путём подачи питания с различных отпаек тягового трансформатора (зоны) и открытия тиристоров на определённый угол синусоиды входного напряжения (фазовое регулирование). Частотно-регулируемый привод. Принцип работы во многом схож с ТИСУ, используется для питания электродвигателей переменного тока (чаще всего трёхфазных асинхронных). Использует в своём составе инверторы, модулирующие для ТЭД переменный ток и регулирующие мощность за счёт изменения частоты и длительности импульсов при формировании аппроксимации синусоиды. При работе электровоза на переменном токе инверторы получают питание от выпрямителя или ВИП, при работе на постоянном — от входного фильтра. При движении со включёнными электродвигателями, особенно при разгоне и торможении, электровозы издают характерный свист изменяющейся частоты. Все российские серийные электровозы такого типа (ЭП10, ЭП20, 2ЭС10, 2ЭС5) используют в составе привода тяговые преобразователи иностранного производства, исключение — промышленный электровоз НПМ2, однако существуют перспективы применения на магистральных электровозах полностью отечественного асинхронного привода. По типу тяговых электродвигателей: С коллекторными двигателями. Сложны в обслуживании и в эксплуатации, так как имеют коллектор (фактически коллектор — постоянно работающий тяжелонагруженный механический переключатель со скользящими контактами), а при питании электровоза постоянным током требуют громоздких балластных реостатов, снижающих КПД. На электровозах переменного тока управление существенно проще и экономичнее за счёт коммутации секций главного трансформатора. Такой тип привода с освоением мощной силовой электроники стал постепенно выходить из эксплуатации, однако в России до сих пор массово выпускаются некоторые серии электровозов с коллекторным приводом, в основном, за счёт дешевизны и хорошей освоенности такого типа привода. С асинхронными двигателями. Двигатель конструктивно очень прост, легко переносит механические перегрузки, но требует для питания трёхфазный переменный ток. Это, в свою очередь, требует либо подвода к электровозу трёхфазного питания непосредственно, как сделано на некоторых железных дорогах Италии, либо выработки его на локомотиве с помощью статических (на современных и перспективных машинах) или машинных преобразователей (устаревшее и нетехнологичное решение, практически нивелирующее преимущества асинхронных двигателей перед коллекторными). С вентильными двигателями. Сочетают некоторые преимущества обоих предыдущих типов. Например, отсутствие коллектора положительно сказывается на долговечности и простоте в обслуживании, и, в то же время, в тяговом приводе могут быть использованы более дешёвые незапираемые тиристоры. Однако синхронные двигатели уступают асинхронным в простоте и стоимости производства, так как либо на них должны применяться мощные постоянные магниты, либо они всё же имеют скользящий контакт подвода постоянного тока к ротору, снижающий надёжность электромашины. Такой тип привода имел, в частности, российский электровоз ЭП200, не пошедший в серию. По типу тягового привода (тяговой передачи). В России применяется следующая классификация электровозов: Тяговый привод 1-го класса: опорно-осевое («трамвайное», хотя именно на трамваях широко применялось до начала 30х годов XX века, а ныне используется исключительно редко) подвешивание тягового электродвигателя. Двигатель через моторно-осевые подшипники опирается на ось колёсной пары, за счёт жёсткой связи очень прост редуктор. На оси двигателя и колёсной пары насажены зубчатые колёса, централь между которыми поддерживается моторно-осевыми подшипниками. Для данной конструктивной схемы характерны большие разрушающие нагрузки на двигатель, однако для грузовых электровозов она до сих пор считается допустимой, в особенности для электровозов с более устойчивыми к динамическим нагрузкам асинхронными двигателями. Ныне в России такая конструктивная схема применяется на всех грузовых и некоторых грузопассажирских электровозах. Современные колёсно-моторные блоки с тяговым приводом первого класса обычно имеют моторно-осевой подшипник качения. Тяговый привод 2-го класса: опорно-рамный двигатель и опорно-осевой редуктор. Типичен для пассажирских электровозов. Двигатель в данной конструктивной схеме обрессорен и соединён с редуктором посредством муфты. Это обеспечивает снижение воздействия на путь и на двигатель. Тяговый привод 3-го класса: опорно-рамные двигатель и редуктор. Редуктор связан с колёсной парой посредством полого карданного вала и муфт(ы). Это полностью исключает из необрессоренной массы не только двигатель, но и редуктор. Из серийных электровозов, построенных в СССР и России, такое подвешивание имеют только пассажирские электровозы ЭП2К и ЭП20, выпускающиеся, соответственно, на Коломенском и Новочеркасском заводах. По типу передачи вращающего момента с тяговых двигателей на колёсные пары различают электровозы с групповым (например, ВЛ40, ВЛ83) и индивидуальным приводом. Под индивидуальным приводом понимается такая передача, при которой вращающий момент передаётся на каждую движущую колёсную пару от одиночного или сдвоенного тягового двигателя. Под групповым приводом понимается такая передача, при которой вращающий момент одного или двух тяговых двигателей передаётся группе движущих колёсных пар, соединённых между собой спарниками или зубчатой передачей. Современные электровозы, как правило, имеют индивидуальный привод, который удобнее как в эксплуатации, так и в ремонте[7]. По наличию и типу электрического торможения — с рекуперативным, реостатным торможением, их сочетанием или вовсе отсутствием электрического торможения. По числу секций — одно-, двух-, трёх- и четырёхсекционные. Некоторые серии электровозов предусматривают возможность объединения двух, трёх или четырёх секций электровозов для работы по СМЕ. По осевой формуле — электровозы разделяются в соответствии с числом и размещением движущих и поддерживающих (бегунковых) колёсных пар. Число и размещение колёсных пар каждого вида обычно обозначается цифровыми формулами. В этих формулах одноосная бегунковая тележка обозначается цифрой 1, двухосная — цифрой 2, затем следует знак «тире» (—) и цифровое обозначение числа движущих колёсных пар, расположенных в каждой движущей тележке. Если тележки имеют сочленение, то между цифрами, обозначающими число колёсных пар, в них ставится знак «плюс» (+). В конце формулы указывается число колёсных пар в задней бегунковой тележке. Если поддерживающих осей электровоз не имеет, то в начале и в конце формулы ставится цифра 0. В случае применения на электровозе индивидуального привода очень часто цифровое обозначение числа движущих колёсных пар дополняется индексом 0. На железных дорогах России нормальной колеи эксплуатировались электровозы с четырёхосными (две двухосные тележки с осевой формулой 0—20—20—0), шестиосными (две трёхосные тележки с осевой формулой 0—30+30—0 или 0—30−30—0 либо три двухосные тележки с осевой формулой 0—20—0—20—20−0) и восьмиосными секциями (две сочленённые четырёхосные тележки с осевой формулой 0—20+20—20+20—0). У многосекционных электровозов тележки между различными секциями, как правило, не имеют сочленения и чаще всего применяются независимые тележки, однако встречаются и двухсекционные электровозы с тележками, сочленёнными между секциями (осевая формула — 0—20+20+20+20—0), например ВЛ8[8]. На узкоколейных железных дорогах встречаются электровозы с одноосными тележками (осевая формула — 0—10−10—0) или жёсткой базой (осевая формула — 0—20—0). Электрическая часть Электрическая часть электровоза включает в себя тяговые двигатели, преобразователи тока и напряжения, аппараты, осуществляющие подключение двигателей и вспомогательных машин под напряжение и регулирующие их работу, аппараты управления, вспомогательные машины, токоведущее оборудование, а также приборы освещения, отопления электровоза и электроизмерительные приборы[12]. Токоведущее оборудование Токоведущее оборудование, размещаемое на крыше или капотах электровоза, служит для присоединения электрических устройств электровоза к контактной сети, через которую электровоз получает энергию для своей работы, и подвода питания к электрическим аппаратам локомотива[12]. Для обеспечения токосъёма с контактной сети используются токоприёмники, устанавливаемые на крыше электровоза[1]. Для передачи энергии от токоприёмника к электрическим аппаратам используются токоведущие шины и проходные изоляторы. Также на крыше электровоза устанавливаются различные коммутационные аппараты, такие как главные воздушные выключатели (служат для отключения цепи на электровозах переменного тока), переключатели родов тока (на многосистемных электровозах) и разъединители для отключения от электрической цепи неисправных токоприёмников. Преобразователи электрической энергии Преобразователи электрической энергии служат для преобразования рода тока и понижения входного напряжения контактной сети до требуемых величин перед подачей на тяговые электродвигатели, вспомогательные машины и прочие цепи электровоза. На электровозах переменного тока устанавливается тяговый трансформатор для понижения входного высокого напряжения, а также выпрямительная установка и сглаживающие реакторы для преобразования входного переменного тока в постоянный. Для питания вспомогательных машин могут устанавливаться статические преобразователи напряжения и тока. На электровозах с асинхронным приводом обоих родов тока устанавливаются тяговые инверторы, которые преобразуют постоянный ток в переменный ток регулируемого напряжения и частоты, подаваемый на тяговые двигатели. Коммутационное и регулирующее оборудование Коммутационное оборудование электровоза состоит из индивидуальных и групповых контакторов, служащих для выполнения переключений в силовой цепи электровоза и цепях вспомогательных машин. Аппараты коммутации обеспечивают: включение тяговых двигателей и электромашинных агрегатов в работу и их выключение, устанавливают требуемое направление и скорость вращения тяговых двигателей[12]. Аппараты дистанционного управления, установленные в кабине, посредством управляющего воздействия машиниста — приводят в действие приводы управления аппаратов коммутации и тем регулирует работу двигателей и вспомогательных машин[9]. Регулирование мощности и скорости движения (и тягового усилия) электровоза производится путём изменения напряжения на якоре и коэффициента возбуждения на коллекторных ТЭД или изменением частоты и напряжения питающего тока на асинхронных ТЭД. Регулирование напряжения выполняется несколькими способами: на электровозах постоянного тока — путём переключения групп тяговых двигателей с последовательного соединения (все ТЭД электровоза соединяются последовательно, напряжение на один ТЭД восьмиосного электровоза — 375 В при напряжении в контактной сети 3 кВ) на последовательно-параллельное (2 группы по 4 ТЭД, соединённых последовательно, напряжение на один ТЭД — 750 В), на параллельное (4 группы по 2 ТЭД, соединённых последовательно, напряжение на один ТЭД — 1500 В), при этом для получения промежуточных значений напряжения на ТЭД в цепь включаются группы реостатов, что позволяет получить ступени регулирования в 40—60 В, но в то же время приводит к потере части электроэнергии, преобразуемой на реостатах в тепло и выбрасываемой в атмосферу. на электровозах переменного тока — путём переключения выводов вторичной обмотки трансформатора (электровозы ВЛ60, ВЛ80 (кроме ВЛ80р)), путём переключения выводов первичной обмотки трансформатора (электровозы ЧС4, ЧС4Т, ЧС8), путём плавного регулирования напряжения с помощью ВИП (выпрямительно-инверторного преобразователя) (электровозы ВЛ80р, ВЛ85, ВЛ65, ЭП1, 2ЭС5К). на электровозах с асинхронным тяговым приводом — путём преобразования постоянного тока в переменный ток регулируемой частоты и напряжения, модулируемого на тяговых инверторах. Данная схема может применяться на электровозах как постоянного, так и переменного тока; на последних она используется с выпрямительно-инверторными преобразователями, осуществляющими первичное преобразование входного переменного тока в постоянный. Переключение ступеней регулирования осуществляется либо вручную, путём поворота ручки контроллера машиниста, либо автоматически в современных моделях с микропроцессорной системой управления (на основе заданных машинистом скорости движения и максимального тока ТЭД). Тяговые электродвигатели Двигатели, приводящие электровоз в движение, называют тяговыми электродвигателями (ТЭД). Тяговые двигатели могут работать также и в режиме генератора. Это свойство используется для электрического торможения. Если электроэнергия, вырабатываемая при вращении ТЭД, гасится на тормозных реостатах, это называется реостатным торможением. Если электроэнергия возвращается в контактную сеть, то такое торможение называется рекуперативным. Вспомогательные машины Вспомогательные машины (вентиляторы, компрессоры, фазорасщепители) служат для получения сжатого воздуха, используемого при действии автоматических тормозов и для приведения в действие аппаратов электровоза, для подачи воздуха, охлаждающего тяговые двигатели во время их работы, для выработки электроэнергии низкого напряжения, используемой при управлении электровозом[12]. СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 1. Сидоров Н. И., Сидорова Н. Н. Как устроен и работает электровоз. — М: Транспорт, 1988. — 223 с. — 70 000 экз. — ISBN 5-277-00191-3. 2. Витевский И. В., Чернявский С. Н. Устройство и ремонт электровозов постоянного тока. — М: Трансжелдориздат, 1959. — 495 с. |