Глава 6 Элементы механики жидкостей. Элементы механики жидкостей
Скачать 407.5 Kb.
|
Глава 6 Элементы механики жидкостей § 28. Давление в жидкости и газе Молекулы газа, совершая беспорядочное, хаотическое движение, не связаны или весьма слабо связаны силами взаимодействия, поэтому они движутся свободно и в результате соударений стремятся разлететься во все стороны, заполняя весь предоставленный им объем, т. е. объем газа определяется объемом того сосуда, который газ занимает. Как и газ, жидкость принимает форму того сосуда, в который она заключена. Но в жидкостях в отличие от газов среднее расстояние между молекулами остается практически постоянным, поэтому жидкость обладает практически неизменным объемом. Хотя свойства жидкостей и газов во многом отличаются, в ряде механических явлений их поведение определяется одинаковыми параметрами и идентичными уравнениями. Поэтому гидроаэромеханика — раздел механики, изучающий равновесие и движение жидкостей и газов, их взаимодействие между собой и обтекаемыми ими твердыми телами,— использует единый подход к изучению жидкостей и газов. В механике с большой степенью точности жидкости и газы рассматриваются как сплошные, непрерывно распределенные в занятой ими части пространства. Плотность жидкости мало зависит от давления. Плотность же газов от давления зависит существенно. Из опыта известно, что сжимаемостью жидкости и газа во многих задачах можно пренебречь и пользоваться единым понятием несжимаемой жидкости — жидкости, плотность которой всюду одинакова и не изменяется со временем. Рис. 44 Если в покоящуюся жидкость поместить тонкую пластинку, то части жидкости, находящиеся по разные стороны от нее, будут действовать на каждый элемент ее поверхности с силами , которые независимо от того, как пластинка ориентирована, будут равна по модулю и направлены перпендикулярно площадке , так как наличие касательных сил привело бы частицы жидкости в движение (рис. 44). Физическая величина, определяемая нормальной силой, действующей со стороны жидкости на единицу площади, называется давлением р жидкости: Единица давления—Паскаль (Па): 1 Па равен давлению, создаваемому силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1 м2 (1 Па = 1 Н/м2). Давление при равновесии жидкостей (газов) подчиняется закону Паскаля (французский ученый (1623—1662)): давление в любом месте покоящейся жидкости одинаково по всем направлениям, причем давление одинаково передается по всему объему, занятому покоящейся жидкостью. Рассмотрим, как влияет вес жидкости на распределение давления внутри покоящейся несжимаемой жидкости. При равновесии жидкости давление по горизонтали всегда одинаково, иначе не было бы равновесия. Поэтому свободная поверхность покоящейся жидкости всегда горизонтальна вдали от стенок сосуда. Если жидкость несжимаема, то ее плотность не зависит от давления. Тогда при поперечном сечении S, высоте h и плотности столба жидкости, его вес , а давление на нижнее основание (28.1) т. е. давление изменяется линейно с высотой. Давление называется гидростатическим давлением. Согласно формуле (28.1), сила давления на нижние слои жидкости будет больше, чем на верхние, поэтому на тело, погруженное в жидкость, действует выталкивающая сила, определяемая законом Архимеда: на тело, погруженное в жидкость (газ), действует со стороны этой жидкости направленная вверх выталкивающая сила, равная весу вытесненной телом жидкости (газа): где — плотность жидкости, V — объем погруженного в жидкость тела. § 29. Уравнение неразрывности Движение жидкости называется течением, а совокупность частиц движущейся жидкости — потоком. Графически движение жидкостей изображается с помощью линий тока, которые проводятся так, что касательные к ним совпадают по направлению с вектором скорости жидкости в соответствующих точках пространства (рис. 45). Линии тока проводятся так, чтобы густота их, характеризуемая отношением числа линий к площади перпендикулярной им площадки, через которую они проходят, была пропорциональна скорости течения жидкости. Таким образом, по картине линий тока можно судить о направлении и модуле скорости течения жидкости в разных точках пространства. Линии тока в жидкости можно «проявить», например, подмешав в нее какие-либо заметные взвешенные частицы. Часть жидкости, ограниченную линиями тока, называют трубкой тока. Течение жидкости называется установившимся (или стационарным), если форма и расположение линий тока, а также значения скоростей в каждой ее точке со временем не изменяются. Рис. 45 Рис.46 Рассмотрим какую-либо трубку тока. Выберем два ее сечения и , перпендикулярные направлению скорости (рис. 46). За время через сечение проходит объем жидкости ; следовательно, за 1 с через пройдет объем жидкости , где — скорость течения жидкости в месте сечения . Через сечение за 1 с пройдет объем жидкости , где — скорость течения жидкости в месте сечения . Здесь предполагается, что скорость жидкости в сечении постоянна. Если жидкость несжимаема ( = const), то через сечение пройдет такой же объем жидкости, как и через сечение , т. е. (29.1) Следовательно, произведение скорости течения несжимаемой жидкости на поперечное сечение трубки тока есть величина постоянная для данной трубки тока. Соотношение (29.1) называется уравнением неразрывности для несжимаемой жидкости. § 30. Уравнение Бернулли Выделим в стационарно текущей идеальной жидкости (физическая абстракция. т. е. воображаемая жидкость, в которой отсутствуют силы внутреннего трения) трубку тока, ограниченную сечениями и , по которой слева направо течет жидкость (рис. 47). Рис. 47 Пусть в месте сечения скорость течения , давление и высота, на которой это сечение расположено, . Аналогично, в месте сечения скорость течения , давление и высота сечения . За малый промежуток времени жидкость перемещается от сечений и к сечениям . Согласно закону сохранения энергии, изменение полной энергии идеальной несжимаемой жидкости должно быть равно работе А внешних сил по перемещению массы т жидкости: (30.1) где — полные энергии жидкости массой т в местах сечений соответственно. С другой стороны, А — это работа, совершаемая при перемещении всей жидкости, заключенной между сечениями , за рассматриваемый малый промежуток времени . Для перенесения массы m от до жидкость должна переместиться на расстояние и от до — на расстояние . Отметим, что и настолько малы, что всем точкам объемов, закрашенных на рис. 47, приписывают постоянные значения скорости v, давления р и высоты h. Следовательно, (30.2) где и (отрицательна, так как направлена в сторону, противоположную течению жидкости, см. рис.47). Полные энергии и будут складываться из кинетической и потенциальной энергий массы m жидкости: (30.3) (30.4) Подставляя (30.3) и (30.4) в (30.1) и приравнивая (30.1) и (30.2), получим (30.5) Согласно уравнению неразрывности для несжимаемой жидкости (29.1), объем, занимаемый жидкостью, остается постоянным, т. е. Разделив выражение (30.5) на получим где — плотность жидкости. Но так как сечения выбирались произвольно, то можем записать (30.6) Выражение (30.6) выведено швейцарским физиком Д. Бернулли (1700—1782; опубликовано в 1738 г.) и называется уравнением Бернулли. Как видно из его вывода, это уравнение — выражение закона сохранения энергии применительно к установившемуся течению идеальной жидкости. Оно хорошо выполняется и для реальных жидкостей, внутреннее трение которых не очень велико. Величина р в формуле (30.6) называется статическим давлением (давление жидкости на поверхность обтекаемого ею тела), величина — динамическим давлением. Как уже указывалось выше (см. § 28), величина представляет собой гидростатическое давление. Для горизонтальной трубки тока ( ) выражение (30.6) принимает вид (30.7) где называется полным давлением. Рис.48 Из уравнения Бернулли (30.7) для горизонтальной трубки тока и уравнения неразрывности (29.1) следует, что при течении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а статическое давление больше в более широких местах, т. е. там, где скорость меньше. Это можно продемонстрировать, установив вдоль трубы ряд манометров (рис.48). В соответствии с уравнением Бернулли опыт показывает, что в манометрической трубке В, прикрепленной к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А и С, прикрепленных к широкой части трубы. Так как динамическое давление связано со скоростью движения жидкости (газа), то уравнение Бернулли позволяет измерять скорость потока жидкости. Для этого применяется трубка Пито — Прандтля (рис.49). Прибор состоит из двух изогнутых под прямым углом трубок, противоположные концы которых присоединены к манометру. С помощью одной из трубок измеряется полное давление ( ), с помощью другой — статическое (р). Манометром измеряется разность давлений: (30.8) где — плотность жидкости в манометре. С другой стороны, согласно уравнению Бернулли, разность полного и статического давлений равна динамическому давлению: (30.9) Рис. 49 Вода+воздух Рис 50 Из формул (30.8) и (30.9) получаем искомую скорость потока жидкости: Уменьшение статического давления в точках, где скорость потока больше, положено в основу работы водоструйного насоса (рис.50). Струя воды подается в трубку, открытую в атмосферу, так что давление на выходе из трубки равно атмосферному. В трубке имеется сужение, по которому вода течет с большей скоростью. В этом месте давление меньше атмосферного. Это давление устанавливается и в откачанном сосуде, который связан с трубкой через разрыв, имеющийся в ее узкой части. Воздух увлекается вытекающей с большой скоростью водой из узкого конца. Таким образом можно откачивать воздух из сосуда до давления 100 мм рт. ст. (1 мм рт. ст. =133,32 Па). Уравнение Бернулли используется для нахождения скорости истечения жидкости через отверстие в стенке или дне сосуда. Рассмотрим цилиндрический сосуд с жидкостью, в боковой стенке которого на некоторой глубине ниже уровня жидкости имеется маленькое отверстие (рис.51). Рассмотрим два сечения (на уровне свободной поверхности жидкости в сосуде и на уровне выхода ее из отверстия). Напишем для них уравнение Бернулли: Так как давления и в жидкости на уровнях первого и второго сечений равны атмосферному, т. е. = , то уравнение будет иметь вид Из уравнения неразрывности (29.1) следует, что , где и — площади поперечных сечений сосуда и отверстия. Если , то членом можно пренебречь и Это выражение получило название формулы Торричелли (Э. Торричелли (1608—1647) — итальянский физик и математик). § 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течений жидкостей Вязкость (внутреннее трение) — это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. При перемещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по касательной к поверхности слоев. Действие этих сил проявляется в том, что со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила. Сила внутреннего трения тем больше, чем больше рассматриваемая площадь поверхности слоя (рис. 52), и зависит от того, насколько быстро меняется скорость течения жидкости при переходе от слоя к слою. На рисунке представлены два слоя, отстоящие друг от друга на расстоянии и движущиеся со скоростями и При этом . Направление, в котором отсчитывается расстояние между слоями, перпендикулярно скорости течения слоев. Рис. 52 Величина показывает, как быстро меняется скорость при переходе от слоя к слою в направлении х, перпендикулярном направлению движения слоев, и называется градиентом скорости. Таким образом, модуль силы внутреннего трения (31.1) где коэффициент пропорциональности , зависящий от природы жидкости, называется динамической вязкостью (или просто вязкостью). Единица вязкости — паскаль-секунда (Па-с):1 Пас равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения в 1 Н на 1 м2 поверхности касания слоев (1 Пас = 1 Нс/м2). Чем больше вязкость, тем сильнее жидкость отличается от идеальной, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причем характер этой зависимости для жидкостей и газов различен (для жидкостей с увеличением температуры уменьшается, у газов, наоборот, увеличивается), что указывает на различие в них механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Например, вязкость касторового масла в интервале 18—40 °С падает в четыре раза. Советский физик П. Л. Капица (1894—1984; Нобелевская премия 1978 г.) открыл, что при температуре 2,17 К жидкий гелий переходит в сверхтекучее состояние, в котором его вязкость равна нулю. Существует два режима течения жидкостей. Течение называется ламинарным (слоистым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа). Ламинарное течение жидкости наблюдается при небольших скоростях ее движения. Внешний слой жидкости, примыкающий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скорости последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы. При турбулентном течении частицы жидкости приобретают составляющие скоростей, перпендикулярные течению, поэтому они могут переходить из одного слоя в другой. Скорость частиц жидкости быстро возрастает по мере удаления от поверхности трубы, затем изменяется довольно незначительно. Так как частицы жидкости переходят из одного слоя в другой, то их скорости в различных слоях мало отличаются. Из-за большого градиента скоростей у поверхности трубы обычно происходит образование вихрей. Профиль усредненной скорости при турбулентном течении в трубах (рис.53) отличается от параболического профиля при ламинарном течении более быстрым возрастанием скорости у стенок трубы и меньшей кривизной в центральной части течения. Рис. 53 Английский ученый О. Рейнольдс (1842—1912) в 1883 г. установил, что характер течения зависит от безразмерной величины, называемой числом Рейнольдса: где — кинематическая вязкость; — плотность жидкости; — средняя по сечению трубы скорость жидкости; d — характерный линейный размер, например диаметр трубы. При малых значениях числа Рейнольдса наблюдается ламинарное течение, переход от ламинарного течения к турбулентному происходит в области 1000 2000, а при Re=2300 (для гладких труб) течение — турбулентное. Если число Рейнольдса одинаково, то режим течения различных жидкостей (газов) в трубах разных сечений одинаков. § 32. Методы определения вязкости 1. Метод Стокса (Дж. Стокс (1819—1903) — английский физик и математик). Этот метод определения вязкости основан на измерении скорости медленно движущихся в жидкости небольших тел сферической формы. На шарик, падающий в жидкости вертикально вниз, действуют три силы: сила тяжести ( — плотность шарика), сила Архимеда ( — плотность жидкости) и сила сопротивления, эмпирически установленная Дж. Стоксом: где — радиус шарика, v — его скорость. При равномерном движении шарика или откуда Измерив скорость равномерного движения шарика, можно определить вязкость жидкости (газа). 2. Метод Пуазейля (Ж. Пуазейль (1799—1868) — французскии физиолог и физик). Этот метод основан на ламинарном течении жидкости в тонком капилляре. Рассмотрим капилляр радиусом R и длиной . В жидкости мысленно выделим цилиндрический слой радиусом и толщиной dr (рис. 54). Рис.54 Сила внутреннего трения (см. (31.1)), действующая на боковую поверхность этого слоя, где dS — боковая поверхность цилиндрического слоя; знак минус означает, что при возрастании радиуса скорость уменьшается. Для установившегося течения жидкости сила внутреннего трения, действующая на боковую поверхность цилиндра, уравновешивается силой давления, действующей на его основание: После интегрирования, полагая, что у стенок имеет место прилипание жидкости, т. е. скорость на расстоянии R от оси равна нулю, получим Отсюда видно, что скорости частиц жидкости распределяются по параболическому закону, причем вершина параболы лежит на оси трубы (см. также рис.53). За время t из трубы вытечет жидкость, объем которой откуда вязкость § 33. Движение тел в жидкостях и газах Одной из важнейших задач аэро- и гидродинамики является исследование движения твердых тел в газе и жидкости, в частности изучение тех сил, с которыми среда действует на движущееся тело. Эта проблема приобрела особенно большое значение в связи с бурным развитием авиации и увеличением скорости движения морских судов. На тело, движущееся в жидкости или газе, действуют две силы (равнодействующую их обозначим ), одна из которых (Rx) направлена в сторону, противоположную движению тела (в сторону потока),—лобовое сопротивление, а вторая (Ry) перпендикулярна этому направлению—подъемная сила (рис.55). Рис. 55 Если тело симметрично и его ось симметрии совпадает с направлением скорости, то на него действует только лобовое сопротивление, подъемная же сила в этом случае равна нулю. Можно доказать, что в идеальной жидкости равномерное движение происходит без лобового сопротивления. Если рассмотреть движение цилиндра в такой жидкости (рис.56), то картина линий тока симметрична как относительно прямой, проходящей через точки А и В, так и относительно прямой, проходящей через точки С и D, т. е. результирующая сила давления на поверхность цилиндра будет равна нулю. Рис. 56 Рис. 57 Иначе обстоит дело при движении тел в вязкой жидкости (особенно при увеличении скорости обтекания). Вследствие вязкости среды в области, прилегающей к поверхности тела, образуется пограничный слой частиц, движущихся с меньшими скоростями. В результате тормозящего действия этого слоя возникает вращение частиц и движение жидкости в пограничном слое становится вихревым. Если тело не имеет обтекаемой формы (нет плавно утончающейся хвостовой части), то пограничный слой жидкости отрывается от поверхности тела. За телом возникает течение жидкости (газа), направленное противоположно набегающему потоку. Оторвавшийся пограничный слой, следуя за этим течением, образует вихри, вращающиеся в противоположные стороны (рис. 57). Лобовое сопротивление зависит от формы тела и его положения относительно потока, что учитывается безразмерным коэффициентом сопротивления Сx, определяемым экспериментально: (33.1) где — плотность среды; — скорость движения тела; 5 — наибольшее поперечное сечение тела. Составляющую Rx можно значительно уменьшить, подобрав тело такой формы, которая не способствует образованию завихрения. Подъемная сила может быть определена формулой, аналогичной (33.1): где Су — безразмерный коэффициент подъемной силы. Для крыла самолета требуется большая подъемная сила при малом лобовом сопротивлении (это условие выполняется при малых углах атаки (угол к потоку, см. рис. 55). Крыло тем лучше удовлетворяет этому условию, чем больше величина К = Су/Сх, называемая качеством крыла. Большие заслуги в конструировании требуемого профиля крыла и изучении влияния геометрической формы тела на коэффициент подъемной силы принадлежат «отцу русской авиации» Н. Е. Жуковскому (1847—1921). Контрольные вопросы
Задачи 6.1. Полый железный шар ( = 7,87 г/см3) весит в воздухе 5 Н, а в воде ( = 1 г/см3) — 3 Н. Пренебрегая выталкивающей силой воздуха, определить объем внутренней полости шара. [ 139 см3 ] 6.2. Бак цилиндрической формы площадью основания S = 1 м2 и объемом V = 3 м3 заполнен водой. Пренебрегая вязкостью воды, определить время t, необходимое для опустошения бака, если на дне бака образовалось круглое отверстие площадью S1 = 10 см2. 6.3. Сопло фонтана, дающего вертикальную струю высотой = 5 м, имеет форму усеченного конуса, сужающегося вверх. Диаметр нижнего сечения d1 = 6 см, верхнего— d2 = 2 см. Высота сопла = 1 м. Пренебрегая сопротивлением воздуха в струе и сопротивлением в сопле, определить: 1) расход воды в 1 с, подаваемой фонтаном; 2) разность давления в нижнем сечении и атмосферного давления. Плотность воды = 1 г/см3. 6.4. На горизонтальной поверхности стоит цилиндрический сосуд, в боковой поверхности которого имеется отверстие. Поперечное сечение отверстия значительно меньше поперечного сечения самого сосуда. Отверстие расположено на расстоянии 64 см ниже уровня воды в сосуде, который поддерживается постоянным, и на расстоянии =25 см от дна сосуда. Пренебрегая вязкостью воды, определить, на каком расстоянии по горизонтали от сосуда падает на поверхность струя, вытекающая из отверстия. [80 см] 6.5. В широком сосуде, наполненном глицерином (плотность = 1,2 г/см3), падает с установившейся скоростью 5 см/с стеклянный шарик ( = 2,7 г/см3) диаметром 1 мм. Определить динамическую вязкость глицерина. [1,6 Пас] 6.6. В боковую поверхность цилиндрического сосуда, установленного на столе, вставлен на высоте 5 см от его дна капилляр внутренним диаметром d= 2 мм и длиной 1= 1 см. В сосуде поддерживается постоянный уровень машинного масла (плотность = 0,9 г/см3 и динамическая вязкость = 0,1 Пас) на высоте = 80 см выше капилляра. Определить, на каком расстоянии по горизонтали от конца капилляра падает на поверхность стола струя масла, вытекающая из отверстия. 6.7. Определить наибольшую скорость, которую может приобрести свободно падающий в воздухе ( = 1,29 г/см3) стальной шарик ( = 9 г/см3) массой = 20 г. Коэффициент Сx, принять равным 0,5. [ 94 см/с ] |