Главная страница

радиофизика билеты 1-4. Если удается выделить малый параметр, то уравнение удается преобразовать к виду


Скачать 1.81 Mb.
НазваниеЕсли удается выделить малый параметр, то уравнение удается преобразовать к виду
Дата24.09.2022
Размер1.81 Mb.
Формат файлаdocx
Имя файларадиофизика билеты 1-4.docx
ТипДокументы
#693795
страница3 из 3
1   2   3

Фазовой скоростью v монохроматичной волны принято называть скорость распространения волнового фронта. В среде с показателем преломления n фазовая скорость υ равна

 



(6.1)

Здесь   – круговая частота, k – волновое число, c – скорость света в вакууме.

Как показывает опыт, все без исключения среды обладают дисперсионными свойствами – волны разных частот распространяются в средах с различными фазовыми скоростями. Это явление называют дисперсиейЗакон дисперсии можно задать либо в виде зависимости показателя преломления от частоты   , либо в виде функции   , либо, наконец, в виде зависимости волнового числа от частоты   . В качестве аргумента в законе дисперсии может быть вместо   использована длина волны   в среде.

При распространении монохроматической волны в среде с дисперсией никаких особых явлений не наблюдается; волна распространяется со своей фазовой скоростью, которая определяется значением показателя преломления на частоте волны. Но если в диспергирующей среде одновременно распространяется группа волн разных частот, то по мере распространения волн возникают фазовые сдвиги между отдельными спектральными компонентами. При этом происходит деформация формы суммарного процесса. Если на входе в диспергирующую среду возмущение имело вид импульса (волнового пакета) определенной формы, то после прохождения некоторого слоя форма импульса может существенно измениться. В общем случае наблюдается расплывание волнового пакета. Рис 6.1. иллюстрирует это утверждение.

По теореме Фурье волновой пакет 1 можно представить в виде суперпозиции монохроматических волн разных частот. На выходе все спектральные компоненты будут вновь складываться, образуя новый волновой пакет 2. Деформация волнового пакета происходит вследствие изменения фазовых соотношений.



Рисунок 6.1. Расплывание волнового пакета в диспергирующей среде.

Вопрос о скорости распространения волнового пакета в среде с дисперсией достаточно сложен и неоднозначен. Можно, например, следить за перемещением переднего фронта (точка A на рис. 6.1). Обычно в теории рассматривается так называемая групповая скорость, то есть скорость перемещения центра волновой группы или точки с максимальным значением амплитуды (точка B).

Рассмотрим простой случай – распространение амплитудно-модулированной волны. При z = 0, то есть на входе в диспергирующую среду, колебание можно записать в виде

 



(6.2)

Этот процесс может быть представлен в виде суперпозиции трех синусоидальных колебаний с частотами   ,   , :

 



(6.3)

Каждая из этих спектральных компонент будет распространяться в среде со своей фазовой скоростью:

 



(6.4)

Таким образом при z > 0 можно записать:

 



(6.5)

Рассмотрим случай достаточно малых значений z, удовлетворяющих условию

 



(6.6)

В этом случае высокочастотные колебания частоты   , описываемые 1-ым и 2-ым слагаемыми в (6.5), практически не отличаются по фазе и могут быть объединены. Тогда

 



(6.7)

Функцию E(zt) можно рассматривать как амплитудно-модулированную волну с медленно изменяющейся во времени и пространстве амплитудой

 . «Моментальная фотография» этой функции изображена на рис. 6.2.



Рисунок 6.2. Амплитудно-модулированная волна.

Как видно из (6.7) модулируемая волна распространяется с фазовой скоростью   . Скорость распространения огибающей, то есть модулирующей волны, есть

 



(6.8)

Это и есть групповая скорость.

Волновой пакет (цуг волн)— определённая совокупность волн, обладающих разными частотами, которые описывают обладающую волновыми свойствами формацию, в общем случае ограниченную во времени и пространстве. Так, в квантовой механике описание частицы в виде волновых пакетов способствовало принятию статистической интерпретации квадрата модуля волновой функции.

Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и, следовательно, цвета). Обычно, чем меньше длина световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде:

  • у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления — минимальна,

  • у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления — максимальна.

Однако в некоторых веществах (например, в парах иода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров иода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

Белый свет разлагается в спектр в результате прохождения через дифракционную решётку или отражения от неё (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций — одних из аберраций оптических систем, в том числе фотографических и видеообъективов.
1   2   3


написать администратору сайта