Главная страница
Навигация по странице:

  • Реферат По дисциплине «Информатика» Тема: «Этапы развития Э лектронно-вычислительных машин»

  • Оглавление Введение 1. Поколения развития ЭВМ 1.1 Первое поколение 1.2 Второе поколение

  • 1.5 Пятое поколение 2. Дополнительный материал: Шестое поколение Заключение Список литературы Введение

  • 1.Поколения развития ЭВМ

  • 1.3 Третье поколение

  • 1.4 Четвертое поколение

  • 2. Дополнительный материал: Шестое поколение О шестом поколении можно пока только мечтать...Нейрокомпьютер

  • Список литературы

  • Эвм. Развитие Эвм. Этапы развития Электронновычислительных машин


    Скачать 40.2 Kb.
    НазваниеЭтапы развития Электронновычислительных машин
    Дата15.11.2022
    Размер40.2 Kb.
    Формат файлаdocx
    Имя файлаРазвитие Эвм.docx
    ТипРеферат
    #790424

    Санкт-Петербургский государственный морской технический университет

    Кафедра вычислительной техники и информационных технологий

    Реферат

    По дисциплине «Информатика»

    Тема: «Этапы развития

    Электронно-вычислительных машин»

    Выполнил: студент гр.813

    Рябов.М.И.

    Проверила: Егорова А.Г.­

    Санкт-Петербург

    2012 год

    Оглавление

    Введение

    1. Поколения развития ЭВМ

    1.1 Первое поколение

    1.2 Второе поколение

    1.3 Третье поколение

    1.4 Четвертое поколение

    1.5 Пятое поколение

    2. Дополнительный материал: Шестое поколение

    Заключение

    Список литературы

    Введение

    Мир сейчас находится на пороге информационного общества. Началом такого перехода стало внедрение в различные сферы деятельности человека современных средств обработки и передачи информации. Переход от индустриального общества к информационному осуществляется благодаря информатизации общества – процессу, при котором создаются условия, удовлетворяющие потребности любого человека в получении необходимой информации. Основную роль, в информационном обществе, будет играть система распространения, хранения и обработки информации, образуя информационную среду, которая может обеспечить любому человеку доступ ко всей информации.

    Новые технологии являются главной движущей силой в дополнение к существующим силам мирового рынка. Всего несколько ключевых компонентов - микропроцессоры, локальные сети, робототехника, специализированные АРМ, датчики, программируемые контроллеры - превратили в реальность концепцию автоматизированного предприятия.

    В XXI веке образованный человек – это человек, хорошо владеющий информационными технологиями. Ведь деятельность людей все в большей степени зависит от их информированности, способности эффективно использовать информацию. Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать, обрабатывать и использовать информацию с помощью компьютеров, телекоммуникаций и других средств связи. Об информации начинают говорить как о стратегическом ресурсе общества, как о ресурсе, определяющем уровень развития государства.

    1.Поколения развития ЭВМ

    Важной вехой в истории ЭВМ является работа Джона фон Неймана, опубликованная в 1956 году.

    Впервые возможность построения цифровой ВМ была доказана английским математиком Тьюрингом в 1936 году. Он показал, что любой алгоритм реализуется с помощью его дискретного автомата, который был назван машиной Тьюринга. Независимо это же доказал Пост (машина Поста).

    Физически первая цифровая ВМ была сконструирована в 1935 году фирмой Белл (США). Такого же вида машина была сконструирована для специальных задач под руководством К. Цузе (1941, Германия). Попытку построения универсальной ЭВМ предпринял Эйкен (США). Она получила название "Марк-1". Спроектирована и изготовлена в Гарвардском университете.

    Характеристики ВМ (работали с 23 разрядными десятичными цифрами):

    1. Программа вводилась покомандно с перфоленты.

    2. Сложение 2-х чисел 0.3 секунды.

    3. Умножение 2-х чисел 6 секунд.

    4. Деление 2-х чисел 11 секунд.

    Релейная основа была ненадежна. Для ЭВМ были разработаны специальные реле, на которых была разработана ВМ "Марк-2".

    Реальный отсчет ВТ ведется с перехода от реле к триггерам. Триггер был изобретен в 1918 году в России Бонч-Бруевичем. Первая ЭВМ, разработанная на электронных компонентах, изготовлена в 1942 году ("Эниак") в Пенсильванском университете под руководством Мокли и Эккерта. В 1943 году под руководством Тьюринга была разработана ЭВМ "Колос". После рассекречивания архивов в 70-х годах оказалось, что первую ЭВМ, которая получила название "ABC", разработал в 1939 году американец болгарского происхождения Атанасофф.

    1.1Первое поколение


    Первым поколением ЭВМ стали ламповые ЭВМ, промышленный выпуск которых был начат в начале 50-х годов.

    В нашей стране началом выпуска можно считать начало 50-х годов - появление "МЭСМ". "МЭСМ" была разработана под руководством Лебедева. В 1952-1953 годах на ее основе была разработана "БЭСМ-1" (Большая электронная счетная машина). А на ее основе был произведен серийный выпуск машины "БЭСМ-2".

    В это же время в США выпускают машину "Эдвак". Технические характеристики машины "БЭСМ-2" были гораздо выше. Это было связано с тем, что в "БЭСМ-2", использовались два совершенно новых принципа: конвейеризации и стека. Для "БЭСМ-2" быстродействие АЛУ составляло порядка 10000 операций в секунду. В 1953 году была разработана машина "Стрела" под руководством Базилевского. А также в Московском Энергетическом институте под руководством академика Брука были разработаны ЭВМ получившие название "М".

    В Минске был создан завод по производству ЭВМ, где началось серийное производство машин "Минск". В городе Пензе появился ОКБ (отдел конструкторского бюро) под руководством академика Рамеева, где разработали и выпускали серийно ЭВМ "Урал".

    Структура ЭВМ первого поколения полностью соответствовала машине фон Неймана. Технические характеристики машин были значительно ниже характеристик современных ПК. Программирование велось в машинных кодах. Емкость ОЗУ составляла 2 тысячи слов, а ввод информации производился с перфоленты и кинопленки.

    Ламповые ЭВМ имели большие габариты и массу, потребляли много энергии и были очень дорогостоящими, что резко сужало круг пользователей ЭВМ, а следовательно, объем производства этих машин. Основными их пользователями были ученые, решавшие наиболее актуальные научно-технические задачи, связанные с развитием атомной энергетики, реактивной авиации, ракетостроения и т. п. Увеличению количества решаемых задач препятствовали низкие надежность и производительность ламповых машин, ограниченность их ресурсов и чрезвычайно трудоемкий процесс подготовки, ввода и отладки программ, написанных на языке машинных команд.

    Повышение быстродействия ЭВМ шло за счет увеличения ее памяти и улучшения архитектуры: использование двоичных кодов для представления чисел и команд, а также размещение их в увеличивающейся памяти ЭВМ упростили структуру процессора и повысили производительность обработки данных. Для ускорения процесса подготовки программ стали создавать первые языки автоматизации программирования (языки символического кодирования и автокоды).

    1.2.Второе поколение


    В 1948 году физики-теоретики Джон Бардин и Уильям Шокли совместно с ведущим экспериментатором фирмы "Белл телефон лабораториз" Уолтером Браттейном создали первый действующий транзистор. Это был точечно-контактный прибор, в котором три металлических "усика" контактировали с бруском из поликристаллического германия.

    Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства.

    Самой удивительной способностью транзистора является то, что он один способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а магнитную ленту, впервые примененную в ЭВМ Юнивак, начали использовать как для ввода, так и для вывода информации. А в середине 60-х годов получило распространение хранение информации на дисках. Большие достижения в архитектуре компьютеров позволило достичь быстродействия в миллион операций в секунду! Примерами транзисторных компьютеров могут послужить "Стретч" (Англия), "Атлас" (США). В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня (например "БЭСМ-6").

    Появление ЭВМ, построенных на транзисторах, привело к уменьшению их габаритов, массы, энергозатрат и стоимости, а также к увеличению надежности и производительности. Это сразу расширило круг пользователей и, следовательно, номенклатуру решаемых задач. Стали создавать алгоритмические языки для инженерно-технических (АЛГОЛ, ФОРТРАН) и экономических (КОБОЛ) расчетов.

    Но и на этом этапе основной задачей технологии программирования оставалось обеспечение экономии машинных ресурсов (машинного времени и памяти). Для ее решения стали создавать операционные системы (комплексы служебных программ, обеспечивающих лучшее распределение ресурсов ЭВМ при исполнении пользовательских задач).

    Первые операционные системы (ОС) просто автоматизировали работу оператора ЭВМ, связанную с выполнением задания пользователя: ввод в машину текста программы, вызов нужного транслятора, вызов потребовавшихся для программы библиотечных подпрограмм, вызов компоновщика для размещения этих подпрограмм и основной программы в памяти ЭВМ, ввод исходных данных и т. д. Теперь же вместе с программой и данными в ЭВМ вводилась еще и инструкция, где перечислялись этапы обработки и приводился ряд сведений о программе и ее авторе. Затем в ЭВМ стали вводить сразу по несколько заданий пользователей (пакет заданий), операционные системы стали распределять ресурсы ЭВМ между этими заданиями — появился мультипрограммный режим обработки данных (например, пока выводятся результаты одной задачи, производятся расчеты для другой и в память вводятся данные для третьей).

    1.3 Третье поколение

    За счет создания технологии производства интегральных микросхем (ИС) удалось добиться увеличения быстродействия и надежности полупроводниковых схем, а также уменьшения их габаритов, потребляемой мощности и стоимости. Интегральные микросхемы состоят из десятков электронных элементов, образованных в прямоугольной пластине кремния с длиной стороны не более 1 см. Такая пластина (кристалл) размещается в небольшом пластмассовом корпусе, размеры которого, как правило, определяются только числом “ножек” (выводов от входов и выходов электронной схемы, созданной на кристалле).

    Это позволило не только повысить производительность и снизить стоимость универсальных ЭВМ (больших ЭВМ), но и создать малогабаритные, простые, дешевые и надежные машины — мини-ЭВМ. Мини-ЭВМ первоначально предназначались для замены аппаратно-реализованных контроллеров (устройств управления) в контуре управления каким-либо объектом, в автоматизированных системах управления технологическими процессами, системах сбора и обработки экспериментальных данных, различных управляющих комплексах на подвижных объектах и т. д.

    Появление мини-ЭВМ позволило сократить сроки разработки контроллеров. Вместо длительной процедуры разработки и создания сложной электронной схемы надо было лишь купить готовый универсальный “полуфабрикат” контроллера, чтобы потом запрограммировать его на выполнение требуемых функций. Правда, такое универсальное устройство, как правило, обладало функциональной избыточностью (для создаваемого контроллера могли не потребоваться некоторые команды мини-ЭВМ, часть ее памяти, высокое быстродействие и т. п.). Однако низкая цена серийной мини-ЭВМ, большое число серийных устройств связи с объектом управления и хорошее программное обеспечение обычно обусловливали экономическую эффективность использования такого программируемого контроллера.Организации, покупавшие мини-ЭВМ для создания контроллеров, довольно быстро поняли, что на этих машинах можно решать и вычислительные задачи — традиционные задачи больших ЭВМ. Простота обслуживания мини-ЭВМ, их сравнительно низкая стоимость и малые габариты позволяли снабдить этими машинами небольшие коллективы исследователей, разработчиков, экспериментаторов и обучающихся, т. е. дать их прямо в руки пользователей ЭВМ. В начале 70-х годов с термином мини-ЭВМ связывали уже два существенно различных типа средств вычислительной техники:

    универсальный блок обработки данных и выдачи управляющих сигналов, серийно выпускаемый для применения в различных специализированных системах контроля и управления;

    • универсальную ЭВМ небольших габаритов, проблемно-ориентированную пользователем на решение ограниченного круга задач в рамках одной лаборатории, технологического участка, т. е. задач, в решении которых оказывались заинтересованными 10—20 человек, работавших над одной проблемой.

    Самое главное в тот период: унификация ЭВМ по конструктивно - технологическим параметрам. ЭВМ третьего поколения начинают выпускаться сериями или семействами, совместимыми моделями. Дальнейшее развитие математического и программного обеспечения приводит к созданию пакетных программ для решения типовых задач, проблемно - ориентированных программных языков (для решения задач отдельной категории) и впервые создаются уникальные программные комплексы, - операционные системы (разработаны IBM).

    1.4 Четвертое поколение

    Успехи в развитии электроники привели к созданию больших интегральных схем (БИС), где в одном кристалле размещалось несколько десятков тысяч электрических элементов. Это позволило разработать более дешевые ЭВМ, имеющие большую память и меньший цикл выполнения команды: стоимость байта памяти и одной машинной операции начала резко снижаться. Но так как затраты на программирование почти не сокращались, то на первый план вышла задача экономии человеческих, а не машинных ресурсов.

    Разрабатывались новые операционные системы, позволяющие программистам отлаживать свои программы прямо за дисплеем ЭВМ (в диалоговом режиме), что облегчало работу пользователей ЭВМ и ускоряло разработку программ. Это полностью противоречило концепциям первых этапов информационной технологии: “процессор выполняет лишь ту часть работы по обработке данных, которую люди принципиально выполнить не могут,— массовый счет”. Стала прослеживаться другая тенденция: “все, что могут делать машины, должны делать машины; люди выполняют лишь ту часть работы, которую нельзя автоматизировать”.

    В 1971 г. была изготовлена БИС, в которой полностью размещался процессор ЭВМ простой архитектуры. Стала реальной возможность размещения в одной БИС (на одном кристалле) почти всех электронных устройств несложных по архитектуре ЭВМ, т. е. возможность серийного выпуска простых ЭВМ стоимостью 5—50 руб. (без учета стоимости внешних устройств). Появились дешевые (карманные клавишные ЭВМ) и управляющие устройства, построенные на одной или нескольких БИС, содержащих процессор, память и системы связи с датчиками и исполнительными органами в объекте управления (т.е. с внешними устройствами такой специализированной ЭВМ). Программы управления подачей топлива в двигатель автомобиля, движением электронной игрушки или заданным режимом стирки белья вводились в память ЭВМ либо при изготовлении подобного контроллера, либо непосредственно на предприятиях, выпускающих автомобили, игрушки, стиральные машины и т.п.

    В 70-х годах стали изготавливать и универсальные вычислительные системы, состоящие из процессора, памяти, схем сопряжения с устройствами ввода-вывода и тактового генератора, размещенных в одной БИС (однокристальная ЭВМ) или в нескольких БИС, установленных на одной печатной плате (одноплатная ЭВМ). Таким образом, повторялась картина 60-х годов, когда первые мини-ЭВМ отбирали часть работы у больших универсальных ЭВМ.

    Характерные свойства ЭВМ четвертого поколения:

    1. Мультипроцессорность.

    2. Параллельно-последовательная обработка.

    3. Языки высокого уровня.

    4. Появляются первые сети ЭВМ.

    Технические характеристики ЭВМ четвертого поколения:

    1. Средняя задержка сигнала 0.7 нс./вентиль (вентиль - типовая схема).

    2. Впервые основная память - полупроводниковая. Время выработки данного из такой памяти 100-150 нс. Емкость 1012 -1013 символов.

    3. Впервые применяется аппаратная реализация оперативной системы.

    4. Модульное построение стало применяться и для программных средств.

    Первый персональный компьютер создали в апреле 1976 года два друга, Стив Джобс (1955 г.р.) — сотрудник фирмы Atari, и СтивенВозняк (1950 г.р.), работавший на фирме Hewlett-Packard. На базе интегрального 8-битного контроллера жестко запаянной схемы популярной электронной игры, работая вечерами в автомобильном гараже, они сделали простенький программируемый на языке Бейсик игровой компьютер “Apple”, имевший бешеный успех. В начале 1977 года была зарегистрирована Apple Comp., и началось производство первого в мире персонального компьютера Apple.

    В настоящее время фирма Apple выпускает персональные компьютеры Macintosh, которые по большинству параметров превосходят компьютеры IBM PC.

    У нас в основном используются ПК типа IBM PC. Это можно объяснить следующими причинами:

    • до начала 90-х годов США запрещали поставки в СССР передовых информационных технологий, к которым были отнесены и мощные компьютеры “Макинтош”;

    • “Макинтоши” были существенно дороже IBM PC (в настоящее время цены на них сблизились);

    • для IBM PC разработано значительно большее количество прикладных программ, что облегчает их использование в самых разных областях.


    1.5 Пятое поколение


    В конце 80-х годов появляются первые ЭВМ пятого поколения. Пятое поколение ЭВМ связывают с переходом к микропроцессорам. С точки зрения структурного построения характерна максимальная децентрализация управления. С точки зрения программного и математического обеспечения - переход на работу в программных средах и оболочках.

    Производительность 108 – 109 операций в секунду. Для пятого поколения характерны многопроцессорные структуры созданные на упрощенных микропроцессорах, которых очень много (решающие поля или среды). Создаются ЭВМ ориентированные на языки высокого уровня.

    В этот период существуют две диаметрально противоположных тенденции: персонификация ресурсов и коллективизация ресурсов (коллективный доступ - сети).

    Благодаря операционной системе, обеспечивающей простоту общения с этой ЭВМ, большой библиотеке прикладных программ по различным отраслям человеческой деятельности, а также малой стоимости ЭВМ становится необходимой принадлежностью инженера, исследователя, экономиста, врача, агронома, преподавателя, редактора, секретаря и даже ребенка.



    2. Дополнительный материал: Шестое поколение

    О шестом поколении можно пока только мечтать...

    Нейрокомпьютер

    Компьютер, созданный на основе нейронных сетей. Пока не существует самостоятельно, но активно моделируется на современных компьютерах.

    Один из разработчиков нейрокомпьютеров А. Н.Горбань считает: "Пять поколений ЭВМ следуют друг за другом. Нарождающееся шестое настолько отличается от предыдущих, что лучше говорить не о поколениях и даже не о новых видах, родах или семействах, а о новом царстве - масштаб дистанции между нейрокомпьютерами и обычными ЭВМ соответствует различиям между царствами живых организмов.

    Чем отличаются машины второго царства?

    1. Большое число параллельно работающих простых элементов - нейронов (от нескольких десятков до 106-108), что обеспечивает колоссальный скачок в быстродействии.

    2. Место программирования занимает обучение (воспитание) - машина учится решать задачи, изменяя параметры нейронов и связей между ними".

    Заключение

    За достаточно короткий промежуток времени Электронно-вычислительная техника сделала большой скачок вперед. Я уже не застал тех огромных компьютеров, которые занимали целые залы и аудитории, а иногда даже этажи. Те компьютеры работали медленно и создавались исключительно в научных целях. Они упрощали подсчеты человека и брали часть его функций (на момент появления первой ЭФМ лишь малую часть) на себя. Компьютеры изначально разрабатывались как помощники человека..

    За те 50 лет, которые ЭВТ развивалась, компьютеры стали незаменимым подспорьем в жизни человека: ракеты запускаются в космос по показаниям компьютеров, погода на завтра определяется мощнейшим компьютером, скорость обработки данных которого запредельно высока даже для понимания продвинутого юзера, фабрики, заводы, даже больницы - везде важен процесс автоматизации. Сегодня многие операции проводятся специально созданными машинными роботами, которые появились на свет благодаря последним компьютерным разработкам. Да и невозможно человеку современному представить свою жизнь без ПК. Человечество не стоит на месте, и прогресс неумолимо бежит вперед. За последние сто лет мы так далеко ушли вперед, что тяжело даже осознать, что на это потребовалось всего лишь 100 лет.

    Список литературы

    1. Беньяш Ю.Л. «Освоение персонального компьютера и работы с документами»

    2. Джек Минго. Как компании стали великими. М. 2001.

    3. Информатика: базовый курс. Под. ред. Симоновича С.В. - СПб.: Питер, 2001.

    4. Могилёв А.В., Пак Н.И., Хеннер Е.К. «Практикум по информатике»



    написать администратору сайта