Изменение структуры металла при пластической деформации и нагреве. Изменение структуры. Факультет Материаловедение и металлургические технологии Кафедра Материаловедение и физикохимия материалов изменение структуры и свойств металла при пластической деформации и последующем нагреве
Скачать 372.06 Kb.
|
Министерство науки и высшего образования Российской федерации Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет» (Национальный исследовательский университет) Факультет «Материаловедение и металлургические технологии» Кафедра «Материаловедение и физико-химия материалов» ИЗМЕНЕНИЕ СТРУКТУРЫ И СВОЙСТВ МЕТАЛЛА ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ И ПОСЛЕДУЮЩЕМ НАГРЕВЕ Реферат Выполнил: студент группы ПЗ - 347 Ольков Владимир Александрович ________________ Проверил: доцент, к.т.н. Лапина Ирина Вильевна ________________ Челябинск 2022 СодержаниеВВЕДЕНИЕ 3 1 Пластическая деформация и ее механизм 4 2Наклеп 7 3 Свойства пластически деформированных металлов 9 4 Влияние нагрева на структуру и свойства холоднодеформированных металлов 11 ЗАКЛЮЧЕНИЕ 15 Список использованной литературы 16 ВВЕДЕНИЕДеформацией называется изменение размеров и формы тела под действием внешних усилий. Различают упругую деформацию, которая исчезает после снятия нагрузки, и пластическую, которая остается после окончания действия приложенных сил. При пластическом деформировании меняется не только внешняя форма металлического тела, но и его структура, а это влечет за собой изменение механических свойств. Под действием внешних усилий первоначально округлые зерна вытягиваются в направлении пластического течения и при больших степенях деформации могут принять форму волокон. 1 Пластическая деформация и ее механизмВ основе пластического деформирования металлов лежит перемещение дислокаций практически при любых температурах и скоростях деформирования. Сущностью пластического деформирования является сдвиг, в результате которого одна часть кристалла смещается по отношению к другой части. Для сдвига в идеальном кристалле, в котором все атомы на плоскости сдвига сразу перемещаются на одно межатомное расстояние, нужно, как показывают расчеты, касательное напряжение 0,1G (G – модуль упругости сдвига). В реальных кристаллах сдвиг происходит при напряжениях всего 10-4G, что в 1000 раз меньше теоретически необходимых. Это объясняется тем, что происходит за счет скольжения дислокаций и в нем участвует незначительная доля атомов, расположенных на плоскости сдвига. Имеется две разновидности сдвига: скольжение и двойникование. В обоих случаях пластическая деформация связана с определенными плоскостями и направлениями в решетке [1]. Фактически пластическая деформация осуществляется за счет перемещения дислокаций. Схема пластической деформации позволяет сделать вывод,что процесс сдвига в кристалле будет происходить тем легче, чем больше дислокаций будет в металле. Большие деформации возможны только вследствие того, что движение первичных дислокаций вызывает появление большого количества новых дислокаций в процессе пластической деформации (рисунок 1.1). а) б) Рисунок 1.1 – Схема деформации (а – схема пластического сдвига в идеальной кристаллической решетке, б – дислокационная схема пластического сдвига) Реальная прочность металлов падает с увеличением числа дислокаций только вначале. Достигнув минимального значения при некоторой плотности дислокаций, реальная прочность вновь начинает возрастать. Такого рода зависимость между реальной прочностью и плотностью дислокаций (и других несовершенств) схематически представлена на рисунке 1.2. Повышение реальной прочности с возрастанием плотности дислокации объясняется тем, что при этом возникают не только параллельные друг другу дислокации, но и дислокации в разных плоскостях и направлениях. Такие дислокации будут мешать друг другу перемещаться, и реальная прочность металла повысится. Следовательно, в той или иной степени наличие дислокаций в реальном металлическом кристалле является причиной более низкой его прочности по сравнению с теоретической, и одновременно придающей способность пластически деформироваться [2]. Рисунок 1.2 – Механизм образования дислокации в процессе пластической деформации Рисунок 1.3 – Прочность кристаллов в зависимости от искажений решетки (числа дефектов) Прочность кристаллов в зависимости от искажений решетки (числа дефектов): 1 – теоретическая прочность; 2 – чистые неупрочненные металлы; 3 – сплавы, упрочненные легированием, наклепом, термической и термомеханической обработкой. Способность реального металла пластически деформироваться является его важнейшим и полезнейшим свойством. Это свойство используют при различных технологических процессах – при протяжке проволоки, операциях гибки, высадки, вытяжки, штамповки и т.д. Большое значение оно имеет и для обеспечения конструктивной прочности или надежности металлических конструкций, деталей машин и других изделий из металла. Опыт показывает, что если металл находится в хрупком состоянии, т.е. если его способность к пластическому деформированию низка, то он в изделиях склонен к внезапным так называемым хрупким разрушениям, которые часто происходят даже при пониженных нагрузках на изделие. 2НаклепВ процессе деформации пара движущихся дислокаций порождает сотни и сотни новых, в результате этого плотность дислокаций повышается, что и приводит к упрочнению (повышению предела прочности), представленному на рисунке 2.1. Рисунок 2.1 – Изменение прочности в зависимости от плотности дислокаций (высокопрочная сталь) Упрочнение металла под действием пластической деформации называется наклепом, или нагартовкой. Пластическая деформация вносит существенные изменения в строение металла. Кристаллическая структура пластически деформированного металла характеризуется не только искажением кристаллической решетки, но и определенной ориентировкой зерен – текстурой [4]. Беспорядочно ориентированные кристаллы под действием деформации поворачиваются осями наибольшей прочности вдоль направления деформации (рисунок 2.2). Рисунок 2.2 - Изменение микроструктуры при пластической деформации поликристалла С увеличением деформации степень текстурованности возрастает и при больших степенях деформации достигает 100%, то есть все зерна оказываются одинаково ориентированными. В результате деформации зерно не измельчается. В действительности оно только деформируется, сплющивается и из равноосного превращается в неравноосное (в виде лепешки, блина), сохраняя ту же площадь поперечного сечения. 3 Свойства пластически деформированных металловВ результате холодного пластического деформирования металл упрочняется и изменяются его физические свойства – электросопротивление, магнитные свойства, плотность. Наклепанный металл запасает 5-10% энергии, затраченной на деформирование. Запасенная энергия тратится на образование дефектов решетки (например, плотность дислокаций возрастает до 109-1012 см2) и на упругие искажения решетки. Свойства наклепанного металла меняются тем сильнее, чем больше степень деформации. При деформировании увеличиваются прочностные характеристики и понижаются пластичность и вязкость. Металлы интенсивно наклепываются в начальной стадии деформирования, после 40%-ной деформации механические свойства меняются незначительно. С увеличением степени деформации предел текучести растет быстрее предела прочности (временного сопротивления). Обе характеристики у сильно наклепанных металлов сравниваются, а удлинение становится равным нулю. Такое состояние наклепанного металла является предельным, при попытке продолжить деформирование металл разрушается. Путем наклепа твердость и временное сопротивление (предел прочности) удается повысить в 1,5-3 раза, а предел текучести - в 3-7 раз при максимально возможных деформациях. Металлы с ГЦК-решеткой упрочняются сильнее металлов с ОЦК-решеткой [5]. С ростом степени деформации возрастает удельное электросопротивление, коэрцитивная сила, понижается магнитная проницаемость, остаточная индукция и плотность металла. Наклепанные металлы более активно, вступают в химические реакции, они легче корродируют и склонны к коррозионному растрескиванию. При больших степенях деформации в результате образования текстуры деформации проявляется анизотропия механических и магнитных свойств. Упрочнение при наклепе широко используют для повышения механических свойств деталей, изготовленных методами холодной обработки давлением. В частности, наклеп поверхностного слоя деталей повышает сопротивление усталости. В промышленности широко применяют следующие высокопроизводительные эффективные и дешевые способы поверхностного упрочнения деталей: дробеструйный наклеп, накатывание поверхности роликами или шариками, чеканка специальными бойками, гидроабразивный наклеп и др. Эти способы позволяют значительно увеличить долговечность деталей, повысить прочность и твердость, уменьшить пластичность и вязкость. Дробеструйный наклеп осуществляется потоком стальной или чугунной дроби (диаметр 0,4-2,0 мм, твердость 62-64 HRC),ударяющей об поверхность готовой детали с большей скоростью (70 м/сек). Удары дробинок приводят к пластической деформации и наклепу поверхности деталей. Степень наклепа зависит от многих факторов: материала детали, вида предшествующей обработки, диаметра дроби и т.д. Например, термически обработанная рессора после наклепа имеет упрочненный слой толщиной 0,2-0,4 мм [3]. При накатывании деталей стальными роликами упрочненный слой получается толщиной несколько миллиметров. При чеканке бойками малоуглеродистой стали при помощи механических или пневматических устройств можно получить упрочненный слой толщиной до 20-30 мм. Гидроабразивный наклеп осуществляется действием струи жидкости с песком на поверхность деталей. Понижение пластичности при наклепе используют для улучшения обрабатываемости резанием вязких и пластичных материалов (сплавов алюминия, латуней и др.). 4 Влияние нагрева на структуру и свойства холоднодеформированных металловУпрочнение сопровождается накоплением остаточной энергии в металле. Пластическая деформация вызывает искажения решетки металла. Остаточная энергия складывается в основном из энергии отклонившихся из положения равновесия атомов. Упрочненное состояние неустойчиво. Неустойчивая структура пластически деформированного металла стремится освободиться от искажений кристаллической решетки и запаса остаточной энергии и перейти в устойчивое состояние. Неравновесная структура, созданная холодной деформацией у большинства металлов устойчива при комнатной температуре. Переход металла в более стабильное состояние происходит при нагреве. При повышении температуры увеличивается кинетическая энергия атомов, в связи с чем ускоряется перемещение точечных дефектов и создаются условия для перераспределения дислокаций и уменьшения их количества [2]. Процессы, происходящие при нагреве, подразделяют на две основные стадии: возврат и рекристаллизацию; обе стадии сопровождаются выделением теплоты и уменьшением свободной энергии. Возврат происходит при относительно низких температурах, рекристаллизация – при более высоких. Возвратом называют все изменения тонкой структуры и свойств, которые не сопровождаются изменением микроструктуры деформированного металла, т.е. размер и форма кристаллов при возврате не изменяются. Рекристаллизацией называют зарождение и рост новых кристаллов с меньшим количеством дефектов строения; в результате рекристаллизации образуются совершенно новые, чаще всего, равноосные кристаллы. Процесс возврата протекает обычно при температурах ниже 0,3 ТПЛ (ТПЛ - абсолютная температура плавления металла или сплава). Стадию возврата, в свою очередь, разделяют на две возможные стадии: отдых и полигонизацию. Отдыхом холоднодеформированного металла называют стадию возврата, при которой вследствие перемещения атомов уменьшается количество точечных дефектов, в основном вакансий; в ряде металлов, таких как алюминий и. железо, отдых включает также переползание дислокаций, которое сопровождается взаимодействием дислокаций разных знаков и приводит к заметному уменьшению их плотности. Перераспределение дислокаций сопровождается также уменьшением остаточных напряжений. Отдых вызывает значительное уменьшение удельного электросопротивления и повышение плотности металла. Если при отдыхе уменьшается плотность дислокаций, то наблюдается уменьшение твердости и прочности металла (алюминий, железо); если плотность дислокаций при отдыхе не меняется, то отдых не сопровождается изменением механических свойств (медь, латунь, никель). Полигонизацией называют стадию возврата, при которой в пределах каждого кристалла образуются новые малоугловые границы [1]. Границы возникают путем скольжения и переползания дислокаций; в результате кристалл разделяется на субзерна - полигоны, свободные от дислокаций, а дислокации скапливаются на границах полигонов, образуя стенки. Два полигона, разделенные стенкой (малоугловой границей), состоящей из нескольких краевых дислокаций схематично показаны на рисунке 4.1. Рисунок 4.1 – Дислокационное строение малоугловой границы Полигонизация холоднодеформированного металла обычно приводит к уменьшению твердости и характеристик прочности. Рекристаллизация. Пластически деформированные металлы могут рекристаллизоваться лишь после деформации, степень которой превосходит определенную минимальную величину, которая называется критической степенью деформации. Если степень деформации меньше критической, то зарождения новых зерен при нагреве не происходит. Критическая степень деформации невелика (2-8%); для алюминия она близка к 2%, для железа и меди - к 5%. Существует также температурный порог рекристаллизации – наименьшая температура нагрева, обеспечивающая возможность зарождения новых зерен. Рекристаллизация состоит из зарождения новых зерен и их последующего постепенного роста. Зарождение новых зерен при рекристаллизации происходит в участках с наибольшей плотностью дислокаций, обычно на границах деформированных зерен. Чем больше степень пластической деформации, тем больше возникает центров рекристаллизации [3]. С течением времени образовавшиеся центры новых зерен увеличиваются в размерах вследствие перехода атомов от деформированного окружения к более совершенной решетке. Рассмотренная стадия рекристаллизации называется первичной рекристаллизацией или рекристаллизацией обработки. Первичная рекристаллизация заканчивается при полном поглощении новыми зернами старых деформированных зерен. По завершении первичной рекристаллизации происходит рост образовавшихся зерен; эта стадия рекристаллизации называется собирательной рекристаллизацией. Собирательная рекристаллизация не связана с предварительной пластической деформацией металла. Этот процесс самопроизвольно развивается при достаточно высоких температурах в связи с тем, что укрупнение зерен приводит к уменьшению свободной энергии металла из-за уменьшения поверхностной энергии (чем крупнее кристаллы, тем меньше суммарная протяженность границ). С повышением температуры рост зерен ускоряется. Чем выше температура нагрева, тем более крупными окажутся рекристаллизованные зерна (рисунок 4.2). Рисунок 4.2 – Схема изменения микроструктуры наклепанного металла при нагреве (а – наклепанный металл, б – начало первичной рекристаллизации, в – конец первичной рекристаллизации; г – собирательная рекристаллизация. Рост зерен происходит путем перехода атомов от одного зерна к соседнему через границу раздела, одни зерна при этом постепенно уменьшаются в размерах и затем исчезают, а другие становятся более крупными, поглощая соседние зерна. Рекристаллизация полностью снимает наклеп, созданный при пластической деформации, металл приобретает равновесную структуру с минимальным количеством дефектов кристаллического строения, восстанавливаются все физические и механические свойства. Время выдержки при нагреве оказывает влияние на размер зерна в том же направлении, что и температура, но значительно слабее. С увеличением степени деформации выше критической размер зерен уменьшается вследствие увеличения числа центров рекристаллизации, а повышение температуры нагрева укрупняет зерна из-за ускорения собирательной рекристаллизации [2]. В рекристаллизованном металле при известных условиях возникает предпочтительная ориентировка зерен – текстура. Текстура рекристаллизации, также как и текстуры другого происхождения, вызывают значительную анизотропию физических и механических свойств. Для конструкционных материалов общего назначения анизотропия свойств обычно нежелательна. Однако при использовании сплавов с особыми физическими свойствами (магнитными, с особыми зависимостями теплового расширения, с особыми упругими свойствами) анизотропию удается практически использовать, улучшая то или иное свойство в определенном направлении изделия. Так, например, широко используется обработка, состоящая из холодной пластической деформации и последующего отжига (нагрева), приводящая к получению текстуры рекристаллизации в листах трансформаторного железа. Образование текстуры обеспечивает более легкую намагничиваемость в определенных направлениях листа. Применение текстурованного трансформаторного железа позволяет уменьшить потери на перемагничивание. Возможность образования текстуры при рекристаллизации зависит от химического состава сплавов, в технических металлах - от природы и количества примесей, от температуры и времени выдержки при рекристаллизации, от сечения изделия и ряда других технологических факторов. ЗАКЛЮЧЕНИЕПластическая деформация поликристаллического металла протекает аналогично деформации монокристалла путем сдвига (скольжения) или двойникования. Формоизменение металла при обработке давлением происходит в результате пластической деформации каждого зерна Пластическая деформация вызывает: - изменение формы и размеров зерен; - изменение внутреннего строения зерна (повышается плотность дислокаций, формируется ячеистая структура). С увеличением степени деформации все заметнее становятся изменения в микроструктуре деформируемого металла: все большее число зерен приобретает не равноосную, а вытянутую форму. При степени деформации 70-80 % практически все зерна вытягиваются в направлении действия растягивающих напряжений В результате наклёпа в поверхностном слое обработанной детали создаётся благоприятная система остаточных напряжений, за счёт чего повышается усталостная прочность и износостойкость. Для создания более прочного и твёрдого поверхностного слоя применяют различные способы обработки поверхности, например, обкатку роликами, дробеструйную обработку, выглаживание, накатывание, дорнование. Из практики известно, что вязкие металлы и сплавы (железо, алюминий, медь, латуни, алюминиевые сплавы) лучше обрабатываются резанием в наклёпанном состоянии, что подтверждает эффективное использование наклёпа в технологии обработки материалов. Список использованной литературы1 Арзамасов Б.Н. Материаловедение: учебник для вузов / Б.Н. Арзамасов – 2-е изд., испр. и доп. – М.: Машиностроение, 2016 – 478 с.; 2 Гормаков А.Н. Материаловедение: учебно-методическое пособие / А.Н. Гормаков – Томск.: ТПУ, 2013 – 477 с.; 3 Гуляев А.П. Металловедение: учебник для вузов / А.П. Гуляев – М.: Металлургия, 2016 – 589 с.; 4 Лахтин Ю.М. Материаловедение: учебник для вузов / Ю.М. Лахтин, В.П. Леонтьева – М.: Альянс, 2011 – 528 с.; 5 Фетисов Г.П. Материаловедение и технология металлов: учебное пособие / Г.П. Фетисов – М.: Высшая школа, 2011 – 392 с. |