|
Философия микропроцессорной техники. Философия микропроцессорной техники
6.3. Практика программирования PIC-микроконтроллеров Для того чтобы написать первые учебные программы и проверить их функционирование, желательно иметь относительно несложный макет, содержащий самые распространенные периферийные устройства. Схема подобного макета, используемого при выполнении лабораторных работ студентами, приведена на рис. 6.3.
Макет питается от источника стабилизированного напряжения +5В. Тактовая частота МК задается RC-цепью и составляет около 2 МГц. К линии RA0 порта А подключен биполярный транзистор в ключевом режиме, нагруженный на динамик ВА1. Звучание динамика обеспечивается подачей на выход RA0 изменяющегося сигнала в звуковом диапазоне. К линии RA1 порта А подключен светодиод VD2, светящийся при высоком напряжении на выходе. Тумблеры SA1 и SA2, а также кнопки SB1 и SB2 подключены, соответственно, к линиям RA2 и RA3 порта А, а также к линии RA4 порта А и линии RB0 порта В. Исходное состояние кнопок – разомкнутое, что обеспечивает подачу на соответствующие входы МК высокого уровня сигнала.
Линии RB1 – RB7 порта B обслуживают семисегментный индикатор HL1 с общим анодом. Поэтому свечение сегмента индикатора обеспечивается при низком уровне сигнала на соответствующем выходе порта B. Макет также содержит средства программирования и связи с компьютером, которые на схеме не показаны.
Рис. 6.3. Схема лабораторного макета.
6.3.2. Инициализация микроконтроллера макета Прежде чем переходить к созданию простейших пользовательских программ, необходимо описать используемые в дальнейшем переменные и настроить МК на работу с выбранным макетом. С этой целью мы напишем и подробно рассмотрим листинг исходной программы init.asm, в состав которой будут включаться все остальные программы пользователя.
;******************************************************
;*листинг исходной программы
;******************************************************
LIST P=16C84, R=HEX ;директива, определяющая тип
;процессора и систему счисления
;по умолчанию
;******************************************************
;*описание используемых переменных и назначения адресов
;*ячеек для хранения переменных пользователя
;******************************************************
; INTCON EQU 0x0B
; OPTION EQU 0x81
; TMR0 EQU 0x01
; INTF EQU 1
; T0IF EQU 5
PCL EQU 0x02
STATUS EQU 0x03
RP0 EQU 5
PORTA EQU 0x05
PORTB EQU 0x06
TRISA EQU 0x05
TRISB EQU 0x06
W EQU 0
F EQU 1
TEMPA EQU 0x0C
TEMPB EQU 0x0D
COUNT1 EQU 0x0E
COUNT2 EQU 0x0F
COUNT3 EQU 0x10
;******************************************************
;*определение меток замены текста
;******************************************************
#DEFINE Z STATUS,2 ;бит нулевого результата
#DEFINE BA1 PORTA,0 ;динамик BA1
#DEFINE VD2 PORTA,1 ;светодиод VD2
#DEFINE SA1 PORTA,2 ;тумблер SA1
#DEFINE SA2 PORTA,3 ;тумблер SA2
#DEFINE SB1 PORTA,4 ;кнопка SB1
#DEFINE SB2 PORTB,0 ;кнопка SB2
#DEFINE HL1_A PORTB,1 ;индикатор-сегмент A
#DEFINE HL1_B PORTB,2 ;индикатор-сегмент B
#DEFINE HL1_C PORTB,3 ;индикатор-сегмент C
#DEFINE HL1_D PORTB,4 ;индикатор-сегмент D
#DEFINE HL1_E PORTB,5 ;индикатор-сегмент D
#DEFINE HL1_F PORTB,6 ;индикатор-сегмент E
#DEFINE HL1_G PORTB,7 ;индикатор-сегмент F
;******************************************************
;*исполняемая программа
;******************************************************
ORG 0x000 ;установка начального адреса по
;сбросу
GOTO BEGIN ;переход на начало программы
ORG 0x005 ;установка начального адреса
;размещения программы
BEGIN
CALL INIT_PORTS ;вызов подпрограммы
;инициализации портов МК
;*****************************************************
;*программа пользователя
;
;*****************************************************
;
INIT_PORTS ;подпрограмма инициализации
;портов
MOVLW 0xFF ;установка линий портов
MOVWF PORTA ;A и B в единичное
MOVWF PORTB ;состояние
BSF STATUS,RP0 ;переход на банк 1
MOVLW 0x1C ;настройка линий RA0 и
MOVWF TRISA ;RA1 порта A на вывод –
;остальных – на ввод
MOVLW 0x01 ;настройка линии RB0
MOVWF TRISB ;порта B на ввод -
;остальных – на вывод
BCF STATUS,RP0 ;возврат в банк 0
RETURN ;возврат из подпрограммы
;
END ;конец программы
Листинг 12.1. Программа init.asm
Рассмотрим работу этой программы. Вначале она указывает ассемблеру тип используемого МК и систему счисления по умолчанию. Идущие далее ассемблерные директивы EQU определяют ассемблерные константы, используемые в этой и последующих программах. Они позволяют использовать в тексте программы более удобные мнемонические метки, привязанные к структуре конкретного МК, вместо корректных, но более сложных ассемблерных выражений. Указатели TEMPA, TEMPB, COUNT1 и COUNT2 назначают адреса ячеек памяти для хранения промежуточных данных (текущих состояний, переменных циклов и т.п.).
Ассемблерные директивы #define задают строку, замещающую соответствующую метку, каждый раз, когда та будет встречаться в исходном тексте. В нашем случае эти директивы позволяют использовать символические имена, привязанные к схеме макета, вместо физических адресов соответствующих разрядов портов и регистров. При этом необходимо иметь в виду, что символы, которые определены директивой #DEFINE, не могут быть просмотрены симулятором. Поэтому для просмотра необходимо использовать физические адреса портов и регистров.
Директива ORG 0x00 устанавливает стартовый адрес программного кода равным 0, т.е. соответствующим начальному состоянию счетчика команд МК после сброса. Команда GOTO BEGIN вместе с ассемблерной директивой ORG 0x005 и меткой BEGIN обеспечивают переход на адрес памяти программ 0x005, начиная с которого и размещается основная часть программы. Это необходимо для того, чтобы обойти адрес 0x004, используемый в качестве вектора прерывания, и тем самым зарезервировать его для возможных будущих применений.
Затем с помощью команды CALL INIT_PORTS производится вызов подпрограммы инициализации портов. Вначале подпрограмма инициализации устанавливает в высокое (единичное) состояние выходные триггеры данных. Эта операция рекомендуется разработчиком МК для того, чтобы исключить неопределенность в состояниях регистров портов. Затем командой BSF STATUS,RP0 производится переключение на банк 1 памяти данных, где расположены регистры управления направлением передачи информации TRISA и TRISB. С помощью команд MOVLW 0x1C и MOVWF TRISA линии RA0 и RA1 порта A настраиваются на вывод, а остальные – на ввод. Команды MOVLW 0x01 и MOVWF TRISB настраивают линию RB0 порта B на ввод, а остальные – на вывод. С помощью команды BCF STATUS,RP0 производится возврат в банк 0, где располагаются необходимые для работы программы регистры и порты.
Поскольку в процессе работы с макетом перенастройка портов не производится, и введенных переменных достаточно для работы всех рассматриваемых учебных задач, они будут далее рассматриваться включенными по умолчанию в состав исходной программы init.asm. При написании учебных задач будет по возможности использоваться метод структурного программирования, при котором прикладная программа строится из некоторого набора программных модулей, каждый из которых реализует определенную процедуру обработки данных. При этом каждый из программных модулей имеет только одну точку входа и одну точку выхода. Введенные однажды программные модули могут использоваться под своим именем в других прикладных программах.
6.3.3. Программирование учебных задач Начнем программирование учебных задач с написания программы, которая считывает состояние кнопки SB1 и выводит его на светодиодный индикатор VD2 так, что не нажатому состоянию кнопки (высокому уровню сигнала на входе RA4) соответствует светящееся состояние светодиода, и наоборот.
;основная программа
LOOP
CLRWDT ;сброс сторожевого таймера
CALL GET_RA ;вызов подпрограммы GET_RA
CALL SB1_VD2 ;вызов подпрограммы SB1_VD2
GOTO LOOP ;переход к метке LOOP для
;повторения процесса
;
GET_RA ;подпрограмма чтения состояния
;порта A
MOVF PORTA,W ;чтение состояния порта A в W
MOVWF TEMPA ;пересылка W в TEMPA
RETURN ;возврат из подпрограммы
;
SB1_VD2 ;подпрограмма вывода на светодиод
;VD2 состояния кнопки SB1 (разряда 4
;регистра TEMPA)
BTFSS TEMPA,4 ;пропустить команду, если
;TEMPA,4=1 (кнопка не нажата)
GOTO P0 ;перейти на P0
BSF VD2 ;зажечь светодиод VD2
P0
BTFSC TEMPA,4 ;пропустить команду, если
;TEMPA,4=0 (кнопка нажата)
GOTO P1 ;перейти на P1
BCF VD2 ;погасить светодиод
P1
RETURN
; Листинг 12.2.
Основная программа содержит замкнутый цикл LOOP – GOTO LOOP, необходимый для периодического повторения цикла контроля состояния кнопки и вывода его на индикатор. Команда CLRWDT исключает влияние возможного сброса по переполнению сторожевого таймера на работу программы. Две следующие команды осуществляют вызов подпрограмм GET_RA и SB1_VD2. Первая из них (GET_RA) вначале считывает текущее состояние порта A, которое помещается в рабочий регистр W. Поскольку рабочий регистр может потребоваться при исполнении других команд, его состояние записывается в регистр TEMPA, используемый здесь для временного хранения состояния порта A. Таким образом, после возврата из подпрограммы GET_RA в разряде 4 регистра TEMPA содержится информация о состоянии кнопки SB1: «1» – не нажата, «0» – нажата.
Подпрограмма SB1_VD2 анализирует состояние разряда 4 регистра TEMPA и, в зависимости от него, зажигает или гасит светодиод. В системе команд МК PIC16F84 нет команд условного перехода, поэтому для организации проверки того или иного условия используются команды, позволяющие пропустить выполнение следующей команды программы, в зависимости от состояния определенного бита в заданном регистре (BTFSS и BTFSC). В частности, команда BTFSS TEMP,4 пропускает исполнение команды GOTO P0, если TEMP,4 = 1 (кнопка не нажата). Тем самым реализуется команда BSF VD2, которая зажигает светодиод VD2. Затем анализируется условие TEMP,4 = 0 (кнопка нажата) и, если оно имеет место, светодиод гасится.
Возможна более простая реализация заданного алгоритма, поскольку нажатое состояние кнопки исключает не нажатое (и наоборот), но представленный вариант более нагляден.
Рассмотрим более сложный вариант программы, предусматривающий зажигание светодиода VD2 только при следующем состоянии тумблеров и кнопок макета: SA1 = 1, SA2 = 1, SB1 = 1 и SB2 = 0.
;основная программа
LOOP
CLRWDT ;сброс сторожевого таймера
CALL GET_RA ;вызов подпрограммы GET_RA
CALL GET_RB ;вызов подпрограммы GET_RB
CALL ZAG_1110 ;вызов подпрограммы ZAG_1110
GOTO LOOP ;переход к метке LOOP для
;повторения процесса
;
GET_RB ;подпрограмма чтения состояния
;порта B
MOVF PORTB,W ;чтение состояния порта B в W
MOVWF TEMPB ;пересылка W в TEMPB
RETURN
;
ZAG_1110 ;зажигает светодиод VD2 только при
;следующем состоянии тумблеров и
;кнопок макета:
;SA1 = SA2 = SB1 = 1 и SB2 = 0
BTFSS TEMPA,2 ;пропустить команду, если
GOTO P0 ;TEMPA,2=1
BTFSS TEMPA,3 ;пропустить команду, если
GOTO P0 ;TEMPA,3=1
BTFSS TEMPA,4 ;пропустить команду, если
GOTO P0 ;TEMPA,4=1
BTFSC TEMPB,0 ;пропустить команду, если
GOTO P0 ;TEMPB,0=0
BSF VD2 ;зажечь светодиод VD2
GOTO P1
P0
BCF VD2 ;погасить светодиод VD2
P1
RETURN
;
INCLUDE GET_RA.ASM
;
Листинг 12.3.
Подпрограммы GET_RA и GET_RB помещают в регистры TEMPA и TEMPB текущие состояния портов A и B, соответственно. Подпрограмма ZAG_1110 анализирует состояния разрядов 2,3 и 4 регистра TEMPA и разряда 0 регистра TEMPB, и при условии TEMPA,2,3,4 = 1,1,1 и TEMPB,0 = 0, зажигает светодиод VD2. При невыполнении хотя бы одного из этих условий светодиод гасится.
Использование директивы INCLUDE GET_PORTA.ASM позволяет включать уже отлаженные модули подпрограмм в текущую программу. Для того чтобы этой возможностью можно было воспользоваться, необходимо сохранять отлаженные модули в виде отдельных ассемблерных файлов.
Попробуем теперь использовать семисегментный индикатор для контроля состояния тумблеров макета. Вначале напишем программу, которая выводит на индикатор HL семисегментное изображение любого двоичного числа от 0b до 1111b в шестнадцатиричном представлении.
;основная программа
LOOP
CLRWDT ;сброс сторожевого таймера
MOVLW 0x0A ;пересылка константы 0A в W
CALL SEV_SEG ;вызов подпрограммы SEVEN_SEG
MOVWF PORTB ;пересылка W в PORTB
GOTO LOOP ;переход к метке LOOP для
;повторения процесса
;
SEV_SEG ;подпрограмма обслуживания
;семисегментного индикатора
ANDLW 0x0F ;маскирование 4-х младших разрядов
;W и обнуление 4-х старших
ADDWF PCL,F ;сложение W с PCL и пересылка
;результата в PCL
RETLW 0x80 ;возврат из подпрограммы с 80 в W
RETLW 0xF2 ;возврат из подпрограммы с F2 в W
RETLW 0x48 ;возврат из подпрограммы с 48 в W
RETLW 0x60 ;возврат из подпрограммы с 60 в W
RETLW 0x32 ;возврат из подпрограммы с 32 в W
RETLW 0x25 ;возврат из подпрограммы с 25 в W
RETLW 0x04 ;возврат из подпрограммы с 04 в W
RETLW 0xF0 ;возврат из подпрограммы с F0 в W
RETLW 0x00 ;возврат из подпрограммы с 00 в W
RETLW 0x20 ;возврат из подпрограммы с 20 в W
RETLW 0x10 ;возврат из подпрограммы с 10 в W
RETLW 0x06 ;возврат из подпрограммы с 06 в W
RETLW 0x8C ;возврат из подпрограммы с 8C в W
RETLW 0x42 ;возврат из подпрограммы с 42 в W
RETLW 0x0C ;возврат из подпрограммы с 0C в W
RETLW 0x1C ;возврат из подпрограммы с 1C в W
;
Листинг 12.4.
Программа начинает свою работу с пересылки константы 0x0A в рабочий регистр W. Затем производится вызов подпрограммы обслуживания семисегментного индикатора SEV_SEG. Работа подпрограммы SEV_SEG начинается с маскирования 4-х младших разрядов W и обнуления 4-х старших. Тем самым из анализа исключаются старшие разряды передаваемого из рабочего регистра W числа. Затем маскированное содержимое регистра W добавляется к текущему состоянию младшего байта счетчика команд PCL, и результат помещается в PCL. Таким образом, производится дополнительное смещение счетчика команд на величину, которая была передана в рабочем регистре. Например, если было W=0, то содержимое счетчика команд не изменится, и будет выполнена следующая команда RETLW 0x80, которая вызовет возврат из подпрограммы с записью 0x80 = B'1000000' в регистр W. Если, как было в при веденной программе, W=0A, то к содержимому PCL будет добавлено число 0x0A, и произойдет дополнительное смещение на 10 шагов. В результате будет выполнена команда RETLW 0x10, которая вызовет возврат из подпрограммы с записью 0x10 = B'0001000' в регистр W.
После возврата из подпрограммы производится пересылка W в PORTB и отображение его состояния на семисегментном индикаторе HL. В частности, если W = 0, то при выводе 1000000b на порт B семисегментный индикатор покажет 0, а при W = A покажет A.Таким образом, может быть отображено любое 4-разрядное двоичное число.
Метод прямого управления счетчиком команд, использованный в подпрограмме SEV_SEG, может применяться для реализации табличной конвертации чисел. При этом необходимо иметь в виду, что данный метод не позволяет конвертировать более 256 значений в одной таблице. Кроме того, программа табличной конвертации должна целиком располагаться внутри 256-байтного блока во избежание переполнения младшего байта счетчика команд.
Используя подпрограмму SEV_SEG, напишем теперь программу, которая читает состояния тумблеров SA1 и SA2 и выводит на индикатор соответствующее число.
;основная программа
LOOP
CLRWDT ;сброс сторожевого таймера
CALL GET_RA ;вызов подпрограммы GET_RA
RRF TEMPA,F ;сдвиг вправо на один разряд
;через перенос
RRF TEMPA,W ;сдвиг вправо на один разряд
;через перенос
ANDLW 0x03 ;маска на два младших разряда
CALL SEV_SEG ;вызов подпрограммы SEVEN_SEG
MOVWF PORTB ;пересылка W в PORTB
GOTO LOOP ;переход к метке LOOP для
;повторения процесса
;
INCLUDE GET_RA.ASM
INCLUDE SEV_SEG.ASM
;
Листинг 12.5.
Подпрограмма GET_RA помещает в регистр TEMPA текущее состояние порта A. Таким образом, в разрядах 2 и 3 регистра TEMPA хранится текущее состояние тумблеров SA1 и SA2. Для того чтобы биты состояния тумблеров заняли позиции 0 и 1 регистра TEMPA, производится два сдвига вправо через перенос, причем результат второго сдвига помещается в регистр W. Затем накладывается маска на два младших разряда рабочего регистра и производится вызов подпрограммы SEV_SEG. После выхода из подпрограммы результат подается на порт B и отображается на индикаторе.
Рассмотрим теперь программы, работающие в реальном масштабе времени, т.е. выдающие сигналы определенной длительности и частоты следования, либо учитывающие временные параметры входных сигналов. Основным элементом таких программ является подпрограмма формирования временной задержки. Рассмотрим один из возможных вариантов такой подпрограммы с использованием программных методов формирования задержки, т.е. без применения встроенного таймера.
;основная программа
MOVLW 0xL ;пересылка константы H'L' в W
CALL DELAY ;вызов подпрограммы DELAY
;
DELAY ;подпрограмма формирования
;задержки времени
MOVWF COUNT1 ;загрузка W в регистр COUNT1
LOOPD
DECFSZ COUNT1,F ;декремент COUNT1
GOTO LOOPD ;повторение цикла H'L' раз
RETURN ;возврат из подпрограммы
;
Листинг 12.6.
Основная программа производит вызов подпрограммы DELAY с некоторой константой L в рабочем регистре W, определяющей число внутренних циклов подпрограммы. Подпрограмма DELAY начинает свою работу с загрузки содержимого рабочего регистра в регистр пользователя COUNT1. Команда DECFSZ COUNT1,F уменьшает на единицу содержимое регистра COUNT1 и проверяет его на равенство нулю. Нулевое состояние регистра COUNT1 приводит к выходу из цикла и возврату из подпрограммы. Для исполнения каждого внутреннего цикла требуется три машинных цикла МК (1 цикл на исполнение команды DECFSZ при ненулевом результате и 2 цикла на каждую команду GOTO). Выход из подпрограммы DELAY потребует 4-х циклов (2 цикла на исполнение команды DECFSZ при нулевом результате и 2 цикла на RETURN). Если добавить к этому еще 4 цикла, необходимых для загрузки константы в рабочий регистр , вызова подпрограммы и загрузки регистра пользователя COUNT1, то общее время исполнения подпрограммы DELAY (задержка) составит
TD = 4 + 3*(L – 1) + 4 = 5 + 3*L циклов,
где L – константа, переданная через рабочий регистр в подпрограмму DELAY.
При тактовой частоте fosc = 2МГц время цикла равно tц = 2 мкс, поэтому при загрузке L = H'00' = .0 максимальный формируемый интервал времени составит 1,55 мс. Такой результат связан с тем, что команда DECFSZ сначала декрементирует содержимое регистра (H'00' – 1 = H'FF'), а затем уже анализирует результат.
Минимальный формируемый интервал времени составит при тех же условиях 5 циклов или 10 мкс. Для получения такого интервала необходимо перед вызовом подпрограммы DELAY загрузить в рабочий регистр число 0x01.
Для расширения верхней границы формируемых временных интервалов, а также с целью повышения удобства работы с подпрограммой, можно добавить в цикл LOOPD одну или несколько дополнительных команд, в качестве которых чаще всего используется команда NOP. Для примера рассмотрим подпрограмму формирования задержки времени DELAY_C
;
DELAY_C ;подпрограмма формирования
;задержки времени (вариант C)
MOVWF MOVWF COUNT1 ;загрузка W в регистр COUNT1
LOOPD
NOP ;пустая команда
DECFSZ COUNT1,F ;декремент COUNT1
GOTO LOOPD ;повторение цикла H'L' раз
RETURN ;возврат из подпрограммы
;
Листинг 12.7.
Общее время исполнения подпрограммы DELAY_C, включая ее вызов, составит
TD = 4 + 4*(L – 1) + 4 = 4 + 4*L циклов.
При тактовой частоте fosc = 2МГц и загрузке константы L = H'F9' = .249 формируемый интервал времени составит ровно 2 мс. Уменьшение константы на единицу уменьшает формируемый временной интервал на 8 мкс. В частности, при L = .124 образуется задержка в 1 мс.
Для формирования больших задержек времени, лежащих в диапазоне долей и единиц секунд, такой подход неудобен. В этом случае используются вложенные циклы, как показано в следующем примере.
;основная программа
MOVLW 0xL ;пересылка константы H'L' в W
CALL DELAY_D ;вызов подпрограммы DELAY_D
;
DELAY_D ;подпрограмма формирования
;большой задержки времени (вариант D)
MOVWF COUNT2 ;загрузка W в регистр COUNT2
CLRF COUNT1 ;сброс содержимого регистра COUNT1
LOOPD
DECFSZ COUNT1,F ;декремент COUNT1
GOTO LOOPD ;повторение цикла 256 раз
CLRWDT ;сброс сторожевого таймера
DECFSZ COUNT2,F ;декремент COUNT2
GOTO LOOPD ;повторение цикла H'L' раз
RETURN ;возврат из подпрограммы
;
Листинг 12.8.
Время исполнения внутреннего цикла подпрограммы DELAY_D составляет 3*256 + 4 машинных циклов МК, поэтому общая задержка составит
TD = 5 + (3*256 + 4)*L циклов.
При тактовой частоте fosc = 2МГц время цикла равно tц = 2 мкс, поэтому при загрузке L = H'00' = .0 максимальный формируемый интервал времени составит около 0,4 с.
Поскольку формируемый интервал времени достаточно велик, во внешний цикл включена команда сброса сторожевого таймера.
Интервал времени 0,4 с не совсем удобен для получения задержек времени, кратных секунде, поэтому рассмотрим еще один вариант подпрограммы формирования больших задержек времени с дополнительной командой NOP во внутреннем цикле.
;
DELAY_E ;подпрограмма формирования
;большой задержки времени (вариант E)
MOVWF COUNT2 ;загрузка W в регистр COUNT2
CLRF COUNT1 ;сброс содержимого регистра COUNT1
LOOPD
NOP ;пустая команда
DECFSZ COUNT1,F ;декремент COUNT1
GOTO LOOPD ;повторение цикла 256 раз
CLRWDT ;сброс сторожевого таймера
DECFSZ COUNT2,F ;декремент COUNT2
GOTO LOOPD ;повторение цикла H'L' раз
RETURN ;возврат из подпрограммы
;
Листинг 12.9.
Время исполнения внутреннего цикла подпрограммы DELAY_E составляет 4*256 + 4 машинных циклов МК, поэтому общая задержка составит
TD = 5 + (4*256 + 4)*L циклов.
При тактовой частоте fosc = 2МГц и при загрузке L = H'F3' = .243 формируемый интервал времени составит около 0,5 с при погрешности не более 0,2%. Если необходима более высокая точность, можно вставить необходимое количество пустых операций во внешний цикл формирования задержки.
Рассмотрим далее несколько программ с использованием подпрограмм формирования задержки времени. Начнем с написания программы, которая подает звуковой сигнал на динамик BA1 при нажатии на кнопку SB1. Динамик будет звучать только в том случае, если на выход RA0 будет подан периодически изменяющийся сигнал. Для того чтобы звук был хорошо слышен, его частота должна находиться вблизи максимума слышимости человеческого уха. Выберем частоту звучания равной 1 КГц, что соответствует периоду следования импульсов сигнала 1 мс.
;основная программа
LOOP
CLRWDT ;сброс сторожевого таймера
CALL GET_RA ;вызов подпрограммы GET_PORTA
CALL SB1_BA1 ;вызов подпрограммы SB1_BA1
GOTO LOOP ;переход к метке LOOP для
;повторения процесса
;
SB1_BA1 ;подпрограмма подачи звука на
;динамик BA1 при нажатии на кнопку
;SB1
BTFSC TEMPA,4 ;пропустить команду, если
;TEMPA,4=0 (кнопка нажата)
GOTO B0 ;перейти на B0
BSF BA1 ;подача высокого уровня на RA0
MOVLW 0x3E ;пересылка константы
;H'3E' = .62 в W
CALL DELAY_C ;вызов подпрограммы DELAY_C
BCF BA1 ;подача низкого уровня на RA0
MOVLW 0x3E ;пересылка константы
;H'3E' = .62 в W
CALL DELAY_C ;вызов подпрограммы DELAY_C
B0
RETURN
;
INCLUDE GET_RA.ASM
INCLUDE DELAY_C.ASM
;
Листинг 12.10.
Как и раньше, подпрограмма GET_RA считывает текущее состояние порта A, которое затем передается в регистр TEMPA. Подпрограмма SB1_BA1 анализирует состояние разряда 4 регистра TEMPA и, в зависимости от результата, озвучивает динамик BA1 или нет. Необходимая выдержка линии RA0 в единичном и нулевом состояниях обеспечивается подпрограммой DELAY_C с параметром L = H'3E' = .62. Это соответствует времени задержки около 0,5 мс, что и дает в результате необходимую частоту следования сигнала 1 Кгц.
Рассмотрим далее программу, которая заставляет мигать светодиод VD2 при нажатии на кнопку SB1. Для того чтобы мигания были хорошо видны, выберем их частоту равной 1 Гц.
;основная программа
LOOP
CLRWDT ;сброс сторожевого таймера
CALL GET_RA ;вызов подпрограммы GET_RA
CALL SB1_VD2M ;вызов подпрограммы
;SB1_VD2M
GOTO LOOP ;переход к метке LOOP для
;повторения процесса
;
SB1_VD2M ;подпрограмма мигания светодиода
;VD2 при нажатии на кнопку SB1
BTFSC TEMPA,4 ;пропустить команду, если
;TEMPA,4=0 (кнопка нажата)
GOTO V0 ;перейти на V0
BSF VD2 ;зажечь светодиод VD2
MOVLW 0xF3 ;пересылка константы
;H'F3' = .243 в W
CALL DELAY_E ;вызов подпрограммы DELAY_E
BCF VD2 ;погасить светодиод
MOVLW 0xF3 ;пересылка константы
;H'F3' = .243 в W
CALL DELAY_E ;вызов подпрограммы DELAY_E
V0
BTFSS TEMPA,4 ;пропустить команду, если
;TEMPA,4=1 (кнопка не нажата)
GOTO V1 ;перейти на V1
BCF VD2 ;погасить светодиод
V1
RETURN
;
INCLUDE GET_RA.ASM
INCLUDE DELAY_E.ASM
;
Листинг 12.11.
Программа работает почти так же, как и предыдущая. Первое отличие заключается в том, что светодиод принудительно гасится при не нажатой кнопке. Второе отличие заключается в величине интервала времени, который составляет здесь 0,5 с и формируется подпрограммой DELAY_E.
Подпрограммы формирования задержки времени могут быть также полезны при работе с такими внешними источниками сигналов, как тумблеры, кнопки, переключатели и т.п. Дело в том, что все механические коммутаторы имеют одно негативное свойство, известное как «дребезг» контактов, которое обусловлено механическими колебаниями контактов при их замыкании и размыкании. Длительность колебаний составляет обычно несколько миллисекунд, в течение которых на вход МК может поступать пачка импульсов вместо идеального перепада.
Аппаратные способы борьбы с «дребезгом» контактов основаны на использовании RS-триггеров, одновибраторов или триггеров Шмитта. В устройствах на основе МК подавление «дребезга» контактов обычно осуществляется программными способами, которые основаны на повторном считывании состояния линии порта через определенное время.
В качестве примера рассмотрим «бездребезговый» вариант подпрограммы чтения состояния порта A.
;
GET_RAD ;подпрограмма чтения состояния
;порта A в регистр TEMPA
;с подавлением "дребезжания"
DD
MOVF PORTA,W ;чтение состояния порта A в W
ANDLW 0x1C ;наложение маски b'00011100'
;на неиспользуемые биты W
MOVWF TEMPA ;пересылка W в TEMPA
CLRWDT ;сброс сторожевого таймера WDT
MOVLW 0x0A ;пересылка константы
;H'0A' = .10 в W
CALL DELAY_E ;вызов подпрограммы DELAY_E
MOVF PORTA,W ;чтение состояния порта A в W
ANDLW 0x1C ;наложение на W маски b'00011100'
SUBWF TEMPA,W ;вычитание W из TEMPA
BTFSS Z ;пропустить команду, если результат
;нулевой
GOTO DD ;перейти на метку DD
RETURN
;
INCLUDE DELAY_E.ASM
;
Листинг 12.12.
Суть работы подпрограммы заключается в повторном чтении состояния порта A спустя некоторое время после предыдущего и сравнении его с прежним значением. Константа H'0A' = .10, пересылаемая в регистр W перед вызовом подпрограммы DELAY_E, обеспечивает значение задержки времени около 20 мс - этого, как правило, достаточно для завершения переходных процессов при переключении механических коммутаторов. Маскирование неиспользуемых разрядов порта повышает надежность работы подпрограммы. Сброс сторожевого таймера перед вызовом подпрограммы задержки нужен для исключения сброса МК между двумя процедурами опроса порта A.
Рассмотрим теперь работу программы, которая использует некоторые из разработанных ранее подпрограмм. Пусть целью работы программы является подсчет числа нажатий на кнопку SB1 с выводом результата на семисегментный индикатор в шестнадцатиричном коде.
;основная программа
CLRF COUNT3 ;сброс счетчика нажатий
LOOP
CLRWDT ;сброс сторожевого таймера
CALL GET_RAD ;вызов подпрограммы GET_RAD
BTFSC TEMPA,4 ;проверка нажатия SB1
GOTO LOOP ;если не нажата – возврат
;на метку LOOP
INCF COUNT3,F ;инкремент счетчика
MOVF COUNT3,W ;пересылка содержимого
;счетчика в рабочий регистр
CALL SEV_SEG ;вызов подпрограммы SEVEN_SEG
MOVWF PORTB ;пересылка W в PORTB
TEST
CALL GET_RAD ;вызов подпрограммы GET_RAD
BTFSS TEMPA,4 ;проверка нажатия SB1
GOTO TEST ;если еще нажата – возврат
;на метку TEST
GOTO LOOP ;возврат на метку LOOP
;
INCLUDE GET_RAD.ASM
INCLUDE SEV_SEG.ASM
;
Листинг 12.13.
Приведенные в главе программы не охватывают и малой доли возможностей, которые предоставляет даже такой простой макет, как изображенный на рис. 6.3. Однако их освоение, надеюсь, будет полезным для начинающих пользователей PIC-контроллеров.
|
|
|
|