Главная страница
Навигация по странице:

  • Цель занятия

  • Почему полупроводники проводят ток

  • Полупроводники характеризуются: типом проводимости (электронный — n-тип, дырочный — р-тип);

  • В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти полностью вытеснили электровакуумные приборы

  • Электронно-дырочный переход

  • Что нужно знать о диодах

  • диоды1. Физические основы работы полупроводниковых


    Скачать 36.06 Kb.
    НазваниеФизические основы работы полупроводниковых
    Дата19.04.2021
    Размер36.06 Kb.
    Формат файлаdocx
    Имя файладиоды1.docx
    ТипКонтрольные вопросы
    #196325

    Тема занятия: Физические основы работы полупроводниковых

                                приборов. Полупроводниковые диоды.        

             

                          

    Цель занятия: Изучить основы работы полупроводниковых приборов. По окончанию изучения материала ответить на контрольные вопросы.

    Контрольные вопросы:

    1.Вспомните и скажите, что такое проводник, диэлектрик,

       полупроводник.

    2.Что называют Электронной и дырочной проводимостью в полупро-

        водниках.

    3. Что такое электронно-дырочный переход. Дайте понятие.

    4 Как образуется запирающий слой. Чему равно запирающее  

       Напряжение для германиевых и кремневых переходов.

    5. Что такое прямой и обратный ток в P-N переходе.

    6. Как обозначается диод на электрических схемах.

    7. Принцип работы диода. 

    8. Что нужно знать о диодах.

    9. Типы диодов.














     

    Что такое полупроводник

    Наряду с проводниками электричества в природе существует много веществ, обладающих значительно меньшей электропроводимостью, чем металлические проводники. Вещества подобного рода называются полупроводниками.

    К полупроводникам относятся: некоторые химические элементы, например селен, кремний и германий, сернистые соединения, например сернистый таллий, сернистый кадмий и т.д. 

    Почему полупроводники проводят ток

    Полупроводник обладает электронной проводимостью, если в атомах его примеси внешние электроны относительно слабо связаны с ядрами этих атомов. Если в подобного рода полупроводнике создать электрическое поле, то под влиянием сил этого поля внешние электроны атомов примеси полупроводника покинут пределы своих атомов и превратятся в свободные электроны.

    Свободные электроны создадут в полупроводнике электрический ток проводимости под влиянием сил электрического поля. Следовательно, природа электрического тока в полупрооводниках с электронной проводимостью та что и в металлических проводниках. Но так как свободных электронов в единице объема полупроводника во много раз меньше, чем в единице объема металлического проводника, то естественно, что при всех прочих одинаковых условиях ток в полупроводнике будет во много раз меньше, чем в металлическом проводнике.

    Полупроводник обладает  и «дырочной» проводимостью, если атомы его примеси не только не отдают своих внешних электронов, но, наоборот, стремятся захватить электроны атомов основного вещества полупроводника. Если атом примеси отберет электрон у атома основного вещества, то в последнем образуется нечто вроде свободного места для электрона — «дырка».

    Атом полупроводника, потерявший электрон, называют «электронной дыркой», или просто «дыркой». Если «дырка» заполняется электроном, перешедшим с соседнего атома, то она ликвидируется и атом становится нейтральным в электрическом отношении, а «дырка» смещается на соседний атом, потерявший электрон. Следовательно, если на полупроводник, обладающий «дырочной» проводимостью, воздействовать электрическим полем, то «электронные дырки» будут смещаться в направлении этого поля.

    Смещение «электронных дырок» в направлении действия электрического поля аналогично перемещению положительных электрических зарядов в поле и, следовательно, представляет собой явление электрического тока в полупроводнике.

    Полупроводники нельзя строго разграничивать по механизму их электрической проводимости, так как наряду с «дырочной» проводимостью данный полупроводник может в той или иной степени обладать и электронной проводимостью.

    Полупроводники характеризуются:

    • типом проводимости (электронный — n-тип, дырочный — р-тип);

    • удельным сопротивлением;

    • временем жизни носителей заряда (неосновных) или диффузионной длиной, скоростью поверхностной рекомбинации;

    • плотностью дислокаций.


    В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти полностью вытеснили электровакуумные приборы.

    В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или np-переход) – это область контакта двух полупроводников с разными типами проводимости.

    В полупроводнике n-типа основными носителями свободного заряда являются электроны; их концентрация значительно превышает концентрацию дырок (nn >> np). В полупроводнике p-типа основными носитялеми являются дырки (np >> nn). При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу (рис. 1.14.1). Пограничная область раздела полупроводников с разными типами проводимости (так называемый запирающий слой) обычно достигает толщины порядка десятков и сотен межатомных расстояний. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение Uз, приблизительно равное 0,35 В для германиевых np-переходов и 0,6 В для кремниевых.

    np-переход обладает удивительным свойством односторонней проводимости.



    Рисунок 1.14.1.

    Образование запирающего слоя при контакте полупроводников p- и n-типов

    Если полупроводник с np-переходом подключен к источнику тока так, что положительный полюс источника соединен с n-областью, а отрицательный – с p-областью, то напряженность поля в запирающем слое возрастает. Дырки в p-области и электроны в n-области будут смещаться от np-перехода, увеличивая тем самым концентрации неосновных носителей в запирающем слое. Ток через np-переход практически не идет. Напряжение, поданное на np-переход в этом случае называют обратным. Весьма незначительный обратный ток обусловлен только собственной проводимостью полупроводниковых материалов, т. е. наличием небольшой концентрации свободных электронов в p-области и дырок в n-области.

    Если np-переход соединить с источником так, чтобы положительный полюс источника был соединен с p-областью, а отрицательный с n-областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из p-области и электроны из n-области, двигаясь навстречу друг другу, будут пересекать np-переход, создавая ток в прямом направлении. Сила тока через np-переход в этом случае будет возрастать при увеличении напряжения источника.

    Способность np-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами. Полупроводниковые диоды изготавливают из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.


    Как работает диод

    Диод - 2-электродный электровакуумный, полупроводниковый или газоразрядный прибор с односторонней проводимостью электрического тока: он хорошо пропускает через себя ток в одном направлении и очень плохо — в другом. Это основное свойство диода используется, в частности, для преобразования переменного тока электросети в постоянный ток.

    Схематическое устройство диода:



    Конструктивно диод представляет собой небольшую пластинку германия или кремния, одна область (часть объема) которой обладает электропроводимостью p-типа, то есть «дырочной» (содержащей искусственно созданный недостаток электронов), другая — электропроводимостью n-типа, то есть электронной (содержащей избыток электронов). Границу между ними называют p-n переходом. Здесь буквы p и n — первые в латинских словах positiv — «положительный», и negativ — «отрицательный». Область p-типа исходного полупроводника такого прибора является анодом (положительным электродом), а область n-типа — катодом (отрицательным электродом) диода.

    Принцип работы диода.



    Если к диоду VD через лампу накаливания HL подключить батарею GB так, чтобы вывод положительного полюса батареи был соединен с анодом, а вывод отрицательного полюса с катодом диода (рис а), тогда в образовавшейся электрической цепи появится ток, о чем будет сигнализировать загоревшаяся лампа HL. Значение этого тока зависит от сопротивления p-n перехода диода и поданного на него постоянного напряжения. Такое состояние диода называют открытым, ток, текущий через него,— прямым током Iпр, а поданное на него напряжение, благодаря которому диод оказался в открытом состоянии,— прямым напряжением Uпр.

    Если полюсы батареи GB поменять местами, как показано на рис. б, то лампа HL не загорится, так как в этом случае диод находится в закрытом состоянии и оказывает току в цепи большое сопротивление. Небольшой ток через p-n переход диода в обратном направлении все же пойдет, но по сравнению с прямым током будет столь незначительным, что нить накала лампы даже не среагирует. Такой ток называют обратным током Iобр, а напряжение, создающее его,— обратным напряжением Uобр.

    Что нужно знать о диодах?

    1. Вы должны приложить достаточное напряжение в «правильном» направлении - от положительного к отрицательному - чтобы диод начал проводить проводку. Обычно это напряжение составляет около 0,7 В.

    2. Диод имеет ограничения и не может проводить неограниченное количество тока.

    3. Диоды не являются идеальными компонентами. Если вы подадите напряжение в неправильном направлении, будет течь немного тока. Этот ток называется «током утечки».

    4. Если вы подадите достаточно высокое напряжение в «неправильном» направлении, диод сломается и пропустит ток и в этом направлении.

    Типы диодов

    Есть много разных типов диодов . Наиболее распространенными являются сигнальные диоды, выпрямительные диоды, стабилитроны и светодиоды (светодиоды) . Сигнальные и выпрямительные диоды - это одно и то же, за исключением того, что выпрямительные диоды рассчитаны на большую мощность.

    Стабилитроны - это диоды, которые используют напряжение пробоя при подаче напряжения «неправильным» образом. Они действуют как очень стабильные опорные напряжения.

     


    написать администратору сайта