Главная страница
Навигация по странице:

  • 3.1. Общая характеристика эндокринной системы

  • 3.2. Физиологическая роль эндокринной системы

  • Методы оценки состояния функций эндокринной системы у человека

  • 3.3. Гипоталамо-гипофизарная система

  • Эффекторные гормоны гипоталамуса и нейрогипофиза.

  • Вазопрессин

  • Эффекторные гормоны гипофиза.

  • Гормон роста (ГР, соматотропин, соматотропный гормон)

  • Пролактин (лактотропный гормон, ЛТГ)

  • физиология эндокринной системы. Физиология эндокринной системы


    Скачать 0.74 Mb.
    НазваниеФизиология эндокринной системы
    Анкорфизиология эндокринной системы.doc
    Дата16.12.2017
    Размер0.74 Mb.
    Формат файлаdoc
    Имя файлафизиология эндокринной системы.doc
    ТипГлава
    #11774
    страница1 из 4
      1   2   3   4

    Глава 3. ФИЗИОЛОГИЯ ЭНДОКРИННОЙ СИСТЕМЫ

    3.1. Общая характеристика эндокринной системы
    Эндокринная система организма человека представлена эндокринными железами (гипофиз, надпочечники и др.), орга­нами с эндокринной тканью (поджелудочная железа, половые железы) и органами с эндокринной функцией клеток (печень, почки, сердце и др.). Особое место отводится гипоталамусу. Он обеспечивает взаимодействие нервных и эндокринных механизмов системной регуляции функций организма.

    Эндокринные железы, или железы внутренней секреции, в отличие от экзокринных желез не имеют выводных протоков и выводят свой секрет во внутреннюю среду организма, в меж­клеточное пространство, откуда он попадает в кровь, лимфу или ликвор. Продукты деятельности эндокринных желез и кле­ток называют гормонами.

    Гормоны – эндогенные химические соединения, обладаю­щие высокой биологической активностью и вызывающие в очень малых концентрациях (10-6–10-12 Ммоль) конкретную биохимическую или биофизическую реакцию в клетке-мишени.

    По химической структуре гормоны делят на четыре группы: 1) пептиды и белки (инсулин, гормон роста); 2) производные аминокислот (адреналин, мелатонин); 3) стероиды, производ­ные холестерола (женские и мужские половые гормоны); 4) эйкозаноиды, производные арахидоновой кислоты (проста- гландины, тромбоксаны).

    Функционально гормоны делят на три группы: 1) эффекторные, действующие непосредственно на клетки-мишени; 2) тропные гормоны гипофиза, управляющие выделением гор­монов периферических эндокринных желез; 3) гипофизуправляющие гормоны гипоталамуса, которые регулируют выделе­ние собственных гормонов гипофиза.

    Общие свойства гормонов: 1) обладают высокой биологи­ческой активностью и эффективны в низких концентрациях; 2) связываются со специфическими рецепторами, которые ло­кализуются на поверхности клеток, в цитозоле или ядре; 3) мо­гут генерировать образование или выделение из депо внутри­клеточных (вторичных) посредников (циклических мононуклеотидов цАМФ и цГМФ, инозитолфосфатов, диацилглицерола, кальция).

    Гормоны циркулируют в крови в свободном (активная фор­ма) и связанном (неактивная форма) состоянии с белками плазмы, форменными элементами или располагаются внутри них. Биологической активностью обладают гормоны в свобод­ном состоянии. Содержание их в крови зависит от скорости продукции, степени связывания, скорости метаболизма в тка­нях (связывания со специфическими рецепторами, разруше­ния или инактивации в клетках-мишенях или гепатоцитах, уда­ления с мочой или с желчью).

    Действие гормона на клетку-мишень обусловлено его вза­имодействием со специфическим белком-рецептором. Гормон является лигандом для рецептора. После их взаимодействия происходит усиление (амплификация) сигнала в геометриче­ской прогрессии (число вторичных посредников в десятки, сот­ни, тысячи раз больше числа молекул гормона). Активация ре­цептора всегда включает механизм обратной связи, которая отключает рецептор или удаляет его с поверхности клеток (десенситизация/адаптация). Действие гормона на клетку часто дополняется влиянием других гормонов, медиаторов, метабо­литов. При этом в клетках-мишенях может происходить инте­грация сигналов от двух и более рецепторов по типу усиления или торможения.

    Рецепторы к гормонам могут локализоваться на мембране клетки (мембранные рецепторы) или внутри нее (внутрикле­точные). Среди мембранных рецепторов различают три се­мейства. Первое – это 7-ТМС-рецепторы, которые посред­ством G-белков включают систему вторичных посредников; второе – 1-ТМС-рецепторы, которые обладают свойствами ферментов и включают каскад ферментативных реакций; третье – лигандзависимые ионные каналы, которые меняют проницаемость мембраны для ионов и вызывают изменение электрического заряда. Через эти рецепторы действуют гор­моны белково-пептидной природы и производные аминокис­лот. Среди внутриклеточных рецепторов выделяют цитоплазматические и ядерные. Через них действуют стероидные и тиреоидные (йодсодержащие) гормоны.

    Физиологические эффекты гормонов зависят в значитель­ной мере от их содержания в крови, количества и качества ре­цепторов и пострецепторных структур в клетках-мишенях.
    3.2. Физиологическая роль эндокринной системы
    В организме имеется две основные регуляторные системы – эндокринная и нервная. Роль эндокринной системы заключа­ется в следующем.

      1. Регуляция всех видов обмена веществ и поддержа­ния гомеостаза. Гормоны регулируют обмен органических и неорганических веществ, процессы восстановления изменен­ного равновесия внутренней среды. Например, при гипоглике­мии (снижении уровня глюкозы в крови) из мозгового вещест­ва надпочечников выделяется гормон адреналин, который включает в клетках печени гликогенолиз (превращение глико­гена в глюкозу), и в результате выхода глюкозы в кровь ее уро­вень нормализуется.

      2. Обеспечение физиологической адаптации организ­ма. Гормоны приспосабливают организм к изменяющимся условиям внутренней или внешней среды.

      3. Обеспечение полноценного физического, умственно­го и полового развития. Например, в условиях гипофункции щитовидной железы у детей существует угроза развития кре­тинизма (физического, полового и умственного недоразвития человека).

    Методы оценки состояния функций эндокринной системы у человека подразделяются на:

    1. клинические методы, основанные на регистрации внешних признаков нарушения функций эндокринных желез, в том числе и их размеров. Например, объективными признака­ми нарушения функции ацидофильных клеток гипофиза в дет­ском возрасте являются карликовость (рост меньше 120 см) при недостаточном выделении гормона роста или гигантизм (рост больше 2 м) при его избыточном выделении;

    2. биохимические и инструментальные методы иссле­дования, базирующиеся на определении уровня самих гормо­нов и их метаболитов в крови, ликворе и моче, скорости их сек­реции, регулируемых ими параметров, исследовании гормо­нальных рецепторов и отдельных эффектов в тканях-мишенях, а также размеров железы и ее активности. При проведении биохимических исследований используются традиционные и новейшие химические, хроматографические, радиорецепторные и радиоиммунологические методики, а также тестирова­ние на животных или на препаратах клеток в условиях in vitro. Инструментальные исследования предполагают использова­ние ультразвуковых, радиоизотопных, рентгенологических ме­тодик, а также получение и микроскопическое изучение биопсийного материала. При необходимости указанные методы ис­следования дополняют функциональными пробами (например, сахарные кривые для определения предрасположенности к сахарному диабету или выявлению его скрытых форм);

    3. клинико-экспериментальные методы, заключающи­еся в изучении функций эндокринной железы при ее удалении (например, удаление щитовидной железы при тиреотоксикозе или раке) и наблюдении за последствиями этого, при проведе­нии лечения гормонами и наблюдении за коррекцией нарушен­ной функции, а также за эффектами передозировки гормонов (например, развитие гипогликемической комы при передози­ровке инсулина).


    3.3. Гипоталамо-гипофизарная система
    Единство нервной и гормональной регуляции в организме обеспечивается тесной анатомической и функциональной связью гипоталамуса и гипофиза. Гипоталамо-гипофизарная система определяет состояние и функционирование всей эндокринной системы либо через эндокринную ось: гипота­ламус → гипофиз → периферические железы (щитовидная, надпочечники, семенники либо яичники), либо через автономную (вегетативную) нервную систему: гипоталамус ве­гетативные центры ствола мозга и спинного мозга → вегета­тивные ганглии → эндокринные железы и их сосуды. Именно поэтому система получила название "дирижера эндокринно­го оркестра".

    Гипофиз расположен в турецком седле основной кости в основании черепа и состоит из передней (аденогипофиз) и зад­ней (нейрогипофиз) долей. Промежуточная доля у взрослого человека рудиментарна. Масса гипофиза составляет всего 0,5 – 0,9 г. С помощью ножки нейрогипофиз анатомически связан с гипоталамусом и получает из него аксоны крупнокле­точных нейронов супраоптического (СОЯ) и паравентрикулярного (ПВЯ) ядер. Аденогипофиз имеет функциональную связь с гипоталамусом через портальную (воротную) систему верхней гипофизарной артерии и через вегетативную иннерва­цию. Ток крови в воротной системе осуществляется от гипота­ламуса к аденогипофизу, в котором находится вторая сеть ка­пилляров и эндокринные клетки-мишени для гипоталамических гормонов. Первая же сеть капилляров находится в сре­динном возвышении гипофизарной ножки. Здесь на сосудах заканчиваются аксоны мелкоклеточных нейронов гипоталаму­са, выделяющие свои гипофизуправляющие гормоны в кровь.

    Эффекторные гормоны гипоталамуса и нейрогипофиза. Ими являются вазопрессин и окситоцин. Эти гормоны синте­зируются в крупноклеточных нейронах СОЯ и ПВЯ гипотала­муса, доставляются путем аксонального транспорта в нейрогипофиз и импульсно выделяются в кровь капилляров нижней гипофизарной артерии.

    Вазопрессин (АДГ, антидиуретический гормон) – пептид, состоящий из 9 аминокислотных остатков. Его содер­жание в крови составляет 0,5 – 5 нг/мл, имеется суточный ритм секреции с максимумом в ранние утренние часы, транс­портируется в свободной форме, период полураспада 5 – 10 мин. АДГ действует на клетки-мишени через мембранные рецепторы (семейства 7-ТМС-рецепторов) и вторичные по­средники.

    Функции АДГ в организме: через V2-рецепторы (вторич­ный посредник цАМФ) в клетках собирательных трубочек по­чек увеличивает реабсорбцию воды, способствует концентри­рованию и уменьшению объема мочи (это явление называется антидиурезом, а гормон, его вызывающий, — АДГ); в больших концентрациях вызывает сужение артерий (отсюда название гормона вазопрессин) через стимуляцию V1-рецепторов глад­ких мышц (внутриклеточные посредники гормона ИТФ (инозитолтрифосфат) и Са2+) и повышение артериального давления крови. АДГ участвует также в формировании мотивации жаж­ды, питьевого поведения и в механизмах памяти.

    Синтез и выделение АДГ рефлекторно усиливаются при по­вышении осмотического давления крови более чем на 2% от исходной величины, а также при понижении объема циркули­рующей крови (ОЦК) и/или артериального давления (АД) крови на 6% и более от исходной величины. Гормон ангиотензин II, стресс и физическая нагрузка также усиливают выделе­ние АДГ. Выделение АДГ понижается при уменьшении осмотического давления крови, повышении ОЦК и/или АД, дей­ствии этилового спирта.

    Недостаточная функция гормона (малая его секреция или нарушения в рецепторных структурах) проявляется избыточ­ным выделением мочи низкой плотности до 10 – 15 л/сут (за­болевание называется несахарный диабет) и гипогидратацией тканей организма. Избыточная функция гормона проявляется уменьшением диуреза и задержкой воды в организме вплоть до развития клеточных отеков, явлений водной интоксикации и гибели организма.

    Окситоцинпептид, состоящий из 9 аминокислотных остатков. Он транспортируется в свободной форме, период по­лураспада 5 – 10 мин, действует на клетки-мишени через мем­бранные рецепторы (семейства 7-ТМС-рецепторов) и вторич­ные посредники (ИТФ, Са2+).

    Функции окситоцина в организме: усиление сокращения матки при родах и в послеродовой период; сокращения миоэпителиальных клеток протоков молочных желез, что вызыва­ет выделение молока при кормлении новорожденных.

    Синтез окситоцина увеличивается в конце беременности под влиянием женских половых гормонов эстрогенов, а его выделение усиливается рефлекторным путем при раздраже­нии механорецепторов шейки матки при ее растяжении во время родов, а также при стимуляции механорецепторов со­сков молочных желез во время кормления.

    Недостаточная функция гормона проявляется слабостью родовой деятельности матки, нарушением выделения молока.

    Эффекторные гормоны гипофиза. Кэффекторным гормо­нам относятся меланоцитстимулирующий гормон (МСГ), пролактин, гормон роста.

    Меланоцитстимулирующий гормон (МСГ, интер­медин) является пептидом (состоит из 13 аминокислотных остатков), вырабатывается в промежуточной зоне гипофиза у плода и новорожденных.

    У взрослого человека эта зона редуцирована и МСГ выра­батывается очень ограниченно. Его функции в организме взрослого человека выполняет АКТГ и β-липотропин. МСГ, АКТГ и β-липотропин образуются из общего белка-предшест­венника – проопиомеланокортина.

    Функции МСГ в организме: индуцирует синтез фермента тирозиназы и, соответственно, образование меланина; вызывает дисперсию меланосом в клетках кожи, что сопровожаается по­темнением кожи. Избыток АКТГ и β-липотропина наблюдается у женщин во время беременности, что приводит к усиленной пигментации естественно пигментированных участков кожи.

    Гормон роста (ГР, соматотропин, соматотропный гормон) выделяется в кровь красными ацидофильными соматотрофами (50% от клеток аденогипофиза), является простым белком (состоит из 191 аминокислотного остатка), транспор­тируется в свободной форме, период полураспада – 10 – 20 мин, действует на клетки-мишени через 1 -ТМС-мембранные рецепторы. Выделяют прямое метаболическое действие гормона роста на клетки-мишени и опосредованное анаболи­ческое влияние через регуляцию выделения гормонов соматомединов С и А (инсулиноподобных факторов роста I и II).

    Основные функции ГР в организме: усиливает процессы биосинтеза белка, нуклеиновых кислот, роста мягких и твер­дых тканей; облегчает утилизацию глюкозы в тканях; способ­ствует мобилизации жиров из депо и распаду жирных высших кислот; задерживает в организме азот, фосфор, кальций, нат­рий, воду; усиливает синтез и секрецию гормонов соматомединов в печени и хрящевой ткани, инсулина и глюкагона – в поджелудочной железе, способствует превращению тирок­сина (Т4) в трийодтиронин (Т3); повышает основной обмен и способствует сохранению мышечной ткани во взрослом орга­низме.

    Синтез и выделение ГР регулируются: 1) гипофизуправляющими гор­монами гипоталамуса – соматолиберином (пептид, усиливающий секре­цию ГР) и соматостатином (пептид, угнетающий синтез и секрецию ГР); 2) циркадными ритмами (максимум содержания гормона в крови прихо­дится на первые два часа сна и в 4 – 6 ч утра); 3) уровнем питательных ве­ществ крови. Гипогликемия, избыток аминокислот и недостаток свобод­ных жирных кислот в крови увеличивают секрецию соматолиберина и ГР. Гормоны кортизол, Т4 и T3 существенно усиливают действие соматоли­берина на соматотрофы.

    Избыточная секреция ГР в детском возрасте проявляется резким ускорением роста (более 12см/год) и развитием гиган­тизма у взрослого человека (рост тела у мужчин превышает 2 м, а у женщин – 1,9 м). Пропорции тела сохранены. Гипер­продукция гормона у взрослых людей сопровождается акроме­галией – непропорциональным увеличением отдельных час­тей тела, которые еще сохранили способность к росту. Это приводит к резкому изменению внешности человека, нередко сопровождается развитием сахарного диабета за счет вызыва­емой инсулинрезистентности (снижения количества инсулиновых рецепторов в тканях), а также активации в печени син­теза фермента инсулиназы, разрушающего инсулин.

    Недостаточная функция ГР в детском возрасте проявляется резким угнетением скорости роста (менее 4 см/год) при сохра­нении пропорций тела и умственного развития. При этом у взрослого человека отмечается карликовость: рост женщин не превышает 120 см, а мужчин – 130 см, нередко сопровожда­ющаяся половым недоразвитием. Второе название этого забо­левания – гипофизарный нанизм. У взрослого человека недо­статок секреции ГР проявляется снижением основного обме­на, массы скелетных мышц и нарастанием жировой массы.

    Пролактин (лактотропный гормон, ЛТГ) выделяет­ся в кровь желтыми лактотрофами (10 – 25% клеток аденогипофиза, а во время беременности их число достигает 70%) аденогипофиза, является простым белком (состоит из 198 аминокислотных остатков), транспортируется в свободной форме, период полураспада – 10 – 20 мин, действует через 1-ТМС-мембранные рецепторы.

    Основные функции пролактина в организме: стимулирует развитие железистой ткани в молочной железе, а затем – обра­зование молока (лактоальбумина, жиров и углеводов): способ­ствует формированию материнского инстинкта; подавляет выде­ление гонадотропинов; стимулирует развитие желтого тела и об­разование им прогестерона; участвует в поддержании осмотиче­ского гомеостаза и предупреждении избыточной потери воды и натрия; стимулирует развитие тимуса.

    Выделение пролактина регулируется гипофизуправляющими гормонами гипоталамуса дофамином (выполняющим функции пролактостатина и угнетающим секрецию ЛТГ) и пролактолиберином (окончательно не иден­тифицирован, им может быть вазоинтестинальный пептид, тиреолиберин, ангиотензин II или β-эндорфин), увеличивающим секрецию, а также сти­мулируется рефлекторным путем с механорецепторов соска молочной же­лезы при акте сосания. Усиливают образование лактотрофов и секрецию ими пролактина плацентарные эстрогены при беременности, а также серотонин и мелатонин, особенно в детском возрасте. Угнетают секрецию про­лактина ФСГ и ЛГ, прогестерон, дофамин, водная нагрузка.

    Избыток гормона (гиперпролактинемия) вызывает у жен­щин галакторею (повышенное образование и выделение моло­ка) и гипогонадизм (снижение функции половых желез); у мужчин – импотенцию и бесплодие. Недостаточность пролактина проявляется неспособностью к лактации.
      1   2   3   4


    написать администратору сайта