Гидравлика и нефтегазовая гидромеханика 1 (1). Гидравлика и нефтегазовая гидромеханика
Скачать 420.2 Kb.
|
Уравнение Бернулли для потока реальной вязкой жидкостиЕсли на участке между расчетными сечениями не совершается механическая работа, а движение является установившимся, без притока и отбора жидкости, и сама жидкость является несжимаемой, то для потока будут справедливы зависимости: Н1=Н2 + Δh1 - 2 z1 + p1/ρg + V12/2g = z2 + p2/ρg + V22/2g + Δh1 - 2 Уравнение Бернулли устанавливает связь между полными напорами потока жидкости на участке ограниченными сечениями 1-1 и 2-2. В соответствии с уравнением Бернулли полный напор потока Hi уменьшается от сечения 1-1 к сечению 2-2 на величину потерь напора (энергии) h1 - 2, вызванных гидравлическими сопротивлениями участка. Иллюстрация уравнения БернуллиДля иллюстрации закона Бернулли на координатной плоскости, совмещенной с принципиальной гидравлической схемой системы изображают напорную и пьезометрическую линии. Уравнение Бернулли для горизонтальной трубыДля горизонтальных трубопроводов и силовых гидроприоводов, в которых пьезометрический набор существенно превышает геометрический удобна следующая форма записи уравнения Бернулли: p1 + ρV12 = p2 + ρV22 + Δp1о 8.Режимы течения: ламинарный и турбулентный, число Ренольдтца. Имеют место два различных по своему характеру режима движения жидкости: ламинарный и турбулентный. При ламинарном режиме жидкость движется слоями без поперечного перемешивания, причем пульсации скорости и давления отсутствуют. При турбулентном режиме слоистость нарушается, движение жидкости сопровождается перемешиванием и пульсациями скорости и давления. Число РейнольдсаКритерием для определения режима движения является безразмерное число Рейнольдса. Для труб круглого сечения число Рейнольдса определяется по формуле: Re = υ·d/ν; - для потоков произвольного поперечного сечения ReRг = υ·Rг /ν; или ReRг = υ·Dг /ν; где υ — средняя скорость жидкости; d — диаметр трубы; Rг — гидравлический радиус; Dг — гидравлический диаметр; ν — кинематический коэффициент вязкости жидкости. Режим будет ламинарным, если Re < Reкр; ReR< ReRкр, и турбулентным, если Re > Reкр; ReR> ReRкр, В выражениях приведенных выше Reкр и ReRкр — критические числа Рейнольдса, для круглых труб обычно принимаемые равными соответственно 2320 и 580. В таблице приведены ориентировочные значения Reкр для некруглых каналов и некоторых гидроагрегатов, при этом число Рейнольдса определено по формуле ReRг = υ·Dг /ν. Для изогнутых каналов (витков), вращающихся вокруг внешней оси 0—0 (следующий рисунок), согласно исследованиям Ю. В. Квитковского и К. И. Толчеева, критическое число Рейнольдса получается несколько большим, чем для прямых труб. 9. Определение потерь в трубопроводе (Дарси). Линейные потери.Основной формулой линейных потерь, наиболее полно вскрывающей их суть, является формула Дарси – Вейсбаха: где - коэффициент гидравлического трения, он зависит от режима движения жидкости и относительной шероховатости, т.е. ; - соответственно длина и диаметр трубопровода; - скорость движения жидкости. Формула является универсальной. По ней можно подсчитать линейные потери в трубопроводах любого назначения, но в настоящее время этой формулой пользуются при расчете объемного гидравлического привода. при расчете водопроводных систем широко используются табличные методы. Так линейные потери можно определить по формуле где - гидравлический уклон, т.е. потери, приходящиеся на единицу длины трубопровода, берется из таблиц в зависимости от материала трубопровода, его диаметра и расхода; l - длина расчетного участка трубопровода. Линейные потери водопроводных систем определяются так же по зависимости где l - длина расчетного участка; Q - расход по участку; К - расходная характеристика, берется из таблиц в зависимости от материала трубопровода и его диаметра. Рассмотрим особенности расчета безнапорных систем, каковыми являются каналы, лотки и т.п. устройства. При равномерном движении жидкости в подобных системах уравнение Бернулли для потока реальной жидкости, составленное для сечений 1-1 и 2-2 имеет вид , т.е. разница геометрических напоров затрачивается на преодоление линейных потерь. Таким образомт движение жидкости обеспечивается наличием гидравлического уклона i, который в данном случае равен геометрическому: . Поэтому при проектировании каналов большой протяженности используют естественный уклон местности и в этом случае определяют пропускную способность канала и его размеры по формуле Шези: где - живое сечение канала; R - гидравлический радиус; С - коэффициент Шези, который зависит от гидравлического радиуса и коэффициента шероховатости. Коэффициент Шези берется из таблиц или определяется по формулам, например, по формуле Маннинга . При необходимости решаются и другие задачи. Местные потери.Для их определения пользуются единственной формулой где - коэффициент местного сопротивления, берется из таблиц и графиков, вычисляется по специальным формулам в зависимости от вида местного сопротивления; V - скорость движения жидкости в трубопроводе, где установлено местное сопротивление. 10.Расчет простого трубопровода. Простым называют трубопровод, состоящий из одной линии труб постоянного сечения (не имеет ответвлений) с постоянным расходом по длине трубопровода. Всякие другие трубопроводы называются сложными. уравнение Бернулли, записанное для сечений на поверхности воды в резервуаре и на выходы из трубы, имеет вид: Пренебрегая величиной (очень малой по сравнению с другими членами уравнения) и обозначая z0-z=H, приводим уравнение Бернулли к виду: При истечении под уровень получим аналогично: . В этом уравнении в отличие от предыдущего местные сопротивления оценены двумя слагаемыми и . Первое слагаемое так же, как и в предыдущем случае, учитывает потери напора на протяжении трубопровода, начиная от выхода из резервуара А в трубу (точка а) и до конца трубы (точка б), за исключением потерь напора на выход в резервуаре В, которые оценены вторым слагаемым. По аналогии с первым случаем, пренебрегая величиной и , можно привести и это уравнение к виду: Формулы тождественны между собой, и гидравлические расчеты для обеих схем трубопровода будут одинаковы. Различие состоит лишь в том, что при истечении под уровень, единица, стоящая в скобках в правой части, представляет собой коэффициент сопротивления «на выход» потока под уровень, в то время как при истечении в атмосферу она учитывает кинетическую энергию, оставшуюся в потоке после выхода из трубопровода, которая может быть так или иначе использована. Таким образом, напор Н при истечении под уровень равен сумме всех сопротивлений: при истечении же в атмосферу он делится на две части: кинетическую энергию, уносимую потоком из трубы, и сумму потерь напора . Гидравлический расчет простого трубопровода сводится к решения трех основных задач (для заданных конфигураций трубопровода, его материала и длины). Первая задача. Требуется определить напор Н, необходимый для пропуска заданного расхода жидкости Q по заданному трубопроводу диаметром d и длиной (шероховатость известна). Задача решается путем непосредственного использования формулы с предварительным вычислением средней скорости . Тогда искомый напор Определение значений коэффициентов и в данной задаче не вызывает затруднений, они находятся на основании известного числа Re (легко находится) и относительной шероховатости трубопровода. Вторая задача. Требуется определить пропускную способность (расход) трубопровода Q при условии, что известны напор Н, длина трубы и ее диаметр d (и шероховатость). Задача решается с помощью формулы, согласно которой Т.к. коэффициенты и являются функциями числа Re, которое связано с неизвестным и искомым здесь расходом Q, то решение находим методом последовательных приближений, полагая в первом приближении существование квадратичного закона сопротивления, при котором коэффициенты и не зависят от числа Re (а определяются только относительной шероховатостью стенок трубопроводов). Третья задача. Требуется определить диаметр трубопровода d при заданных значениях Q, и Н. Здесь также используем формулу, но встречаемся с трудностями в вычислениях вследствие того, что Re неизвестно, неизвестна следовательно и . Решение задачи производится также методом последовательных приближений, полагая в первом приближении наличие квадратичного закона сопротивления, при котором коэффициент является функцией только диаметра (при заданной шероховатости стенок трубы) Тогда уравнение приводится к виду . Задаваясь рядом значений диаметра d1, d2, …,du и вычисляя по последней формуле соответственно Q1, Q2, …, Qu, строим график Q=f(t), из которого определяем диаметр, отвечающий заданному расходу. 11.Основы подземной гидравлики. Процессы движения жидкостей, газа и воды сквозь пористые породы изучает раздел подземной гидравлики. Расчетные модели базируются на классических положениях гидравлики, однако главной особенностью являются наличие пористой среды, поэтому законы и зависимости имеют отличия. Подземная гидравлика изучает процессы фильтрации. Основной задачей подземной гидравлики является расчет дебитов скважин и их параметров. Структура скважины представлена на рис. 4.1. Фильтрация - движение жидкостей, газов и их смесей в пористых и трещиноватых средах, в твердых телах, пронизанной системой сообщающихся между собой пор и микротрещин. Рис. 4.1. Схема поверхностей фильтрации в пласте с грунтовыми водами Фильтрация жидкостей и газов по сравнению с движением в трубах и каналах обладает некоторыми особенностями, а именно происходит по чрезвычайно малым в поперечных размерах поровым каналам при очень малых скоростях движения жидкостей. При этом, поскольку площади соприкосновения жидкости с твердыми частицами при движении жидкости в пористой велики, велики и силы трения. Пористая среда характеризуется коэффициентами пористости и просветности. Активная пористость (пористость) - безразмерная величина, характеризующая способность пористой среды пропускать жидкость, учитывает только те поры и микротрещины, которые соединены между собой и через которые может фильтроваться жидкость. Коэффициент пористости m - отношение объема пор ( ) ко всему объему пористой среды ( ): . (4.1) Коэффициентом просветности n - отношение площади просветов ( ) в данном сечении пористой среды ко всей площади этого сечения ( ): (4.2) Среднее по длине пласта значение просветности равно пористости, т.е. , (4.3) Поэтому среднее значение площади просветов Скоростью фильтрации называется отношение объемного расхода жидкости к площади поперечного сечения пласта, нормального к направлению движения жидкости (4.6) Скорость фильтрации представляет собой фиктивную скорость, с которой двигалась бы жидкость, если бы пористая среда отсутствовала (m=1), поэтому для более корректной характеристики скорости используют понятие средней скорости движения жидкости. Скорость фильтрации и средняя скорость движения связана соотношением: (4.8) В общем виде средняя скорость движения жидкости равна отношению объемного расхода к площади просветов (живому сечению потока): (4.7) Коэффициент фильтрации с – скорость фильтрации при градиенте давления равном единице, зависит от свойств пористой среды и от свойств фильтрующейся жидкости. Проницаемость - способность пористой среды пропускать сквозь себя жидкости и газы, характеризуется коэффициентом проницаемости. В отличии от коэффициента фильтрации с коэффициент проницаемости k зависит от свойств пористой среды. Коэффициент проницаемости и фильтрации связаны соотношением (4.8) Коэффициент проницаемости имеет размерность площади, а коэффициент фильтрации — размерность скорости. На практике проницаемость нефтяных и газовых пластов измеряется единицами, называемыми дарси (Д). За единицу проницаемости 1 Д принимают проницаемость такой пористой среды, при фильтрации через образец которой площадью 1 см2, длиной 1 см при перепаде давления в 1 кгс/см2 (98100 Па) расход жидкости вязкостью 1 сП (1 мПа с) составляет 1 см3/с. Для перевода в систему СИ справедливо соотношение: . Проницаемость реальных пластов изменяется от нескольких миллидарси до нескольких дарси. |