11_Лекция. Гидрокаталитические процессы переработки нефтяного сырья
Скачать 129.65 Kb.
|
Лекция 11 ГИДРОКАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ ПЕРЕРАБОТКИ НЕФТЯНОГО СЫРЬЯ Рассматриваемые вопросы: 1. Классификация, назначение гидрогкаталитических процессов нефтепереработки. 2. Каталитический риформинг. 3. Каталитическая изомеризация лёгких алканов. Классификация, назначение и значение гидрокаталитических процессов нефтепереработки К гидрокаталитическим процессам в нефтеиереработке относят процессы, осуществляемые в среде водорода в присутствии катализаторов. По спецефичности каталитического действия гидрокаталитические процссы можно классифицировать на следующие типы: 1. Гидрокаталитического реформирования нефтяного сырья: 1.1 каталитическая ароматизация прямогонных бензинов (каталитический риформинг); 1.2 каталитическая изомеризация лёгких (С4-С6) нормальных алканов. Основной целью этих процессов является повышение октанового числа бензинов или получение индивидуальных ароматических или лёгких изопарафиновых углеводородов. 2. Каталитические гидрогенизационные процессы облагораживания нефтяного сырья: 2.1 гидроочистка нефтяных фракций; 2.2 гидрообессеривание высококипящих и остаточных фракций (вакуумных газойлей, масел, парафинов и нефтяных остатков); Эти процессы предназначены для удаления из нефтяного сырья гетероорганических соединений. 3. Каталитические процессы деструктивной гидрогенизации (гидрокрекинг) нефтяного сырья: 3.1 селективный гидрокрекинг нефтяного сырья (топливных фракций, масел, гидравлических жидкостей) с целью повышения октановых чисел автобензинов и получения низкозастывающих нефтепродуктов путём гидродепарафинизации; 3.2 лёгкий гидрокрекинг вакуумных газойлей и низкооктановых бензинов соответственно для гидроподготовки сырья каталитического крекинга с одновременным получением дизельных фракций и для повышения содержания изопарафиновых углеводородов в бензинах; 3.3 глубокий гидрокрекинг дистиллятного сырья (вакуумных газойлей) и нефтяных остатков с целью углубления переработки нефти; 3.4 гидродеароматизация реактивных топлив и масляных дистиллятов. Гидрогенизационные каталитические процессы в современной мировой нефтепереработке получили среди вторичных процессов наибольше распространение, а такие как каталитический крккинг и гидроочистка являются процессами, обязательно входящими в состав любого НПЗ, особенно при переработке сернистых и высокосернистых нефтей. Это обусловлено причинами: - непрерывным увеличением в общем балансе доли сенистых и высокосернистых нефтей; - ужесточением требований по охране природы и к качеству товарных нефтепродуктов; - развитием каталитических процессов с применением активных и селективных катализаторов, требующих предварительного глубокого гидрооблагораживания (например, для процессов каталитического риформинга и крекинга). Таблица 1 - Доля гидрокаталитических процессов на НПЗ различных стран мира в % от прямой перегонки нефти
Общие признаки гидрогенизационных каталитических процессов: - химические превращения в них осуществляются под давлением водорода, образующегося в одних процессах, например КР, и расходуемого в других; - химические превращения нефтяного сырья осуществляются на катализаторах би- или полифункционального действия; - в составе всех катализаторов содержатся компоненты, ответственные за протекание гомолитических реакций гидрирования-дегидрирования (Pt, Pd, Со, Ni и др.). В качествеве 2-го компонента, осуществляющего гетеролитические реакции, такие как изомеризация, циклизация, крекинг и др., в зависимости от типа процессов применяются преимущественно оксид алюминия, промотированный кислотой, алюмосиликат, цеолит, а также сульфиды Mo, W и др., обладающие р-проводимостью (т.е. дырочной проводимостью). 2. Каталитический риформинг Теоретические основы процессов каталитического риформинга Процесс каталитического риформинга предназначен для повышения детонационной стойкости бензинов и получения индивидивидуальных аренов, главным образом бензола, толуола, ксилолов - сырья нефтехимии. Важное значение имеет получение дешевого водородосодержего газа (ВСГ) для использования в других гидрогенизационных каталитических процессах. Значение процессов каталитического риформинга в нефтепереработке существенно возросло в 1990-е гг. в связи с необходимостью проиводства неэтилированного высокооктанового автомобильного бензина. Бензиновые фракции большинства нефтей содержат 60 – 70 % алканов, 10 % аренов и 20 – 30 % 5- и 6-членных цикланов. Среди алканов преобладают углеводороды нормального строения и их моно-метилзамещенные изомеры. Цикланы представлены преимущественно алкилгомологами циклогексана и циклопентана, а арены - алкилбензолами. Такой состав обусловливает низкое октановое число прямогонного бензина, обычно не превышающее 50 пунктов. Помимо прямогонных бензинов как сырье каталитического риформинга используют бензины вторичных процессов – замедленного коксования (ЗК) и термического крекина (ТК) после их глубокого гидрооблагораживания и гидрокрекинга. Выход прямогонных бензинов - около 15 – 20 % от нефти. Кроме того, часть бензинов используется и для других целей (сырье пиролиза, производство водорода, получение растворителей и т. д.). Поэтому общий объем сырья, перерабатываемого на установках каталитического риформинга, не превышает обычно потенциального содержания бензиновых фракций в нефтях. Химизм и термодинамика процесса Целевыми в процессах каталитического риформинга являются реакции образования аренов за счет: дегидрирования шестичленных цикланов дегидроизомеризация циклопентанов дегидроциклизации (С5- или С6- дегидроциклизации) алканов В процессе параллельно протекают и нежелательные реакции гидрокрекинга с образованием как низко-, так и высокомолекулярных углеводородов, а также продуктов уплотнения - кокса, откладывающегося на поверхности катализаторов. Наиболие важные реакции риформинга, ведущие к образованию аренов из цикланов и алканов, идут с поглощением тепла, у реакций изомеризации тепловой эффект, близкий к 0, а реакции гидрокрекинга экзотермичны. В условиях каталитического риформинга наиболее легко и быстро протекают реакции дегидрирования гомологов циклогексана. Относительно этой р-ции скорость ароматизации из 5-членных цикланов примерно на порядок ниже. Наиболее медленной из реакций ароматизации является дегидроциклизация алканов, скорость которой лимитируется наиболее медленной стадией циклизации (на 2 порядка ниже). Таблица 2 – Относительные скорости и тепловые эффекты реакций каталитического риформинга
Превращения цикланов и алканов в арены - обратимые реакции, протекающие с увеличением объема и поглощением тепла. Следовательно, по правилу Ле-Шателье, равновесная глубина ароматизации увеличивается с ростом температуры и понижением парциального давления водорода. Однако промышленные процессы каталитического риформинга вынужденно осуществляют либо при повышенных давлениях с целью подавления реакций коксообразования (при этом снижение равновесной глубины ароматизации компенсируют повышением температуры), либо с непрерывной регенерацией катализатоpa при пониженных давлениях. Катализаторы и механизм их каталитического действия Процесс каталитическогориформинга осуществляют на бифункциональных катализатораx, сочетающих кислотнуютную и гидрирующую-дегидрирующую функции. Гомолитические реакции гидрирования и дегидрирования протекают на металлических центрах платины или платины, промотированной добавками рения, иридия, олова, галлия, германия и др. тонко диспергированных на носителе. Кислотную функцию в промышленных катализатоpax каталитического риформинга выполняет носитель, в качестве которого используют оксид алюминия. Для усиления и регулирования кислотной функции носителя в состав катализатоpa вводят галоген: F или С1. В настоящее время применяют только хлорсодержащие катализаторы. Содержание хлора составляет от 0,4 - 0,5 до 2,0 % масс. Платина на катализаторе каталитического риформинга ускоряет реакции гидрирования-дегидрирования и замедляет образование кокса на его поверхности. Обусловливается это тем, что адсорбированный на платине водород сначала диссоциируется, затем активный (атомарный) водород диффундирует на поверхности катализатора к кислотным центрам, ответственным за образование коксовых отложений. Коксогены гидрируются и десорбируются с поверхности. В этой связи скорость образования кокса при прочих равных условиях зависит от давления водорода. Поэтому минимальная концентрация платины в катализатораx каталитического риформинга определяется необходимостью прежде всего поддерживать их поверхность в «чистом» виде, а не только с целью образования достаточного числа активных металлитических центров на поверхности носителя. В монометаллических алюмоплатиновых катализатоpax содержание платины составляет 0,3 - 0,8 % масс. Очень важно, чтобы платина была достаточно хорошо диспергирована на поверхности носителя. С увеличением дисперсности платины повышается активность катализатора. Процесс каталитического риформинга в последние годы был связан с разработкой и применением сначала биметаллических и затем полиметаллических катализаторов, обладающих повышенной активностью, селективностью и стабильностью. Используемые для промотирования металлы можно разделить на 2 группы. К первой из них принадлежат металлы 8-го ряда: Re и Ir, известные как катализаторы гидро-дегидрогенизации и гидрогенолиза. К другой группе модификаторов относят металлы, практически неактивные в реакциях риформинга, такие как Ge, Sn и Pb (IV группа), Ga, In и редкоземельные элементы (III группа) и Cd (из II группы). К биметаллическим катализаторам относят платино-рениевые и платино- иридиевые, содержащие 0,3 - 0,4 % масс. Pt и примерно столько же Re и Ir. Re или Ir образуют с Pt биметаллические сплав, точнее кластер, типа Pt-Re-Rе-Pt-, который препятствует рекристаллизации - укрупнению кристаллов Pt при длительной эксплуатации процесса. Биметаллические кластерные катализаторы (получаемые обычно нанесением металлов, обладающих каталитической активностью, особенно благородных, на носитель с высокоразвитой поверхностью) характеризуются, кроме высокой термостойкости, повышенной активностью по отношению к диссоциации молекулярного водорода и миграции атомарного водорода (спилловеру). В результате отложение кокса происходит на более удаленных от металлических центров катализатора, что способствует сохранению активности при высокой его закоксованности (до 20 % масс. кокса на катализаторе). Из биметаллических катализаторов платино-иридиевый превосходит по стабильности и активности в реакциях дегидроциклизации парафинов не только монометаллический, но и платино-рениевый кататаллизатор. Применение биметаллических катализаторов позволило снизить давление риформинга (от 3,5 до 2 - 1,5 МПа) и увеличить выход бензина с ОЧИМ (октановое число определённое исследовательским методом) до 95 пунктов примерно на 6%. Полиметаллические кластерные катализаторы обладают стабильностью биметалла, но характеризуется повышенной активностью, лучшей селективностью и обеспечивают более высокий выход рифината. Срок их службы составляет 6 - 7 лет. Эти достоинства их обусловливаются, по-видимому, тем, что модификаторы образуют с Pt (и промоторами) поверхностные тонкодиспергированные кластеры с кристаллическими структурами, геометрически более соответствующие и энергетически более выгодные для протекания реакций ароматизации через мультиплетную хемосорбцию. Среди других преимуществ полиметаллических катализаторов следует отметить возможность работы при пониженном содержании платины и хорошую регенерируемость. Успешная эксплуатация полиметаллических катализаторов возможна лишь при выполнении определенных условий: - содержание серы в сырье риформинга не должно превышать 1·10-4 % масс. для чего требуется глубокое гидрооблагораживание сырья в блоке предварительной гидроочистки; - содержание влаги в циркулирующем газе не должно превышать (2-3)· 10-3 % мольн.; - при пуске установки на свежем и отрегенерированном катализаторе требуется использование в качестве инертного газа чистого азота (полученного, например, ректификацией жидкого воздуха); - для восстановления катализатоpa предпочтительно использование электролитического водорода. В настоящее время отечественной промышленностью вырабатываются 3 типа катализаторов риформинга: - монометаллические (АП-56 и АП-64); - биметаллические (КР-101 и КР-102); - полиметаллические (КР-104, КР-106, КР-108 и платино-ирионитовый СГ-ЗП). Таблица 3 – Характеристика отечественных промышленных катализаторов риформинга
Основы управления процессом Качество сырья риформинга определяется фракционным составом и химическим составом бензина. Фракционный состав сырья выбирают в зависимости от целевого назначения процесса. Если процесс проводят с целью получения индивидуальных аренов, то для получения бензола, толуола и ксилолов используют соответственно фракции, содержащие углеводороды С6 (62 - 85 0С), С7 (85 – 105 0С) и С8 (105 – 140 0С). Если каталитический риформинг проводится с целью получения высокооктанового бензина, то сырьем обычно служит фракция 85 – 180 0С, соответствующие углеводородам С7 - С10. Установлено, что с увеличением молекулярной массы фракции и, следовательно, ее температуры кипения выход рифината постепенно возрастает, что особенно заметно при жестких условиях процесса (495 0С). Аналогичная зависимость от фракционного состава и молекулярной массы фракции наблюдается по выходу аренов и по октановому числу рифината. При риформинге головных фракций бензина, выкипающих до 85 0С, образуются малоценный бензол и преимущественно продукты гидрокрекинга. Фракционный состав сырья риформинга оказывает также существенное влияние на закоксовывание катализатора. С уменьшением числа углеродных атомов до C5 коксообразование увеличивается, а с ростом числа атомов С более 7 - вначале слабо и начиная с С10, более интенсивно. При риформинге аренов, являющихся наиболее коксогенными компонентами, с ростом числа атомов С содержание кокса непрерывно растет. В случае цикланов наибольшее содержание кокса наблюдается при риформинге циклопентана и метилциклопентана. Наиболее низкой коксогенностью характеризуются 6-членные цикланы в связи с легкостью их дегидрирования до бензола и его гомологов. Важное значение в процессах риформинга имеет химический состав сырья. Как правило, с увеличением содержания суммы цикланов и аренов в сырье выход риформата и водорода возрастает. Температурный режим процесса и распределение объема катализатора по реакторам Поскольку процесс ароматизации сильно эндотермичен, его осуществляют в каскаде из 3-4 реакторов с промежуточным подогревом сырья. В первом по ходу сырья реакторе проходит в основная протекающая с наибольшей скоростью сильно эндотермическая реакция дегидрирования цикланов. В последнем реакторе протекают преимущественно эндотермические реакции дегидроциклизации и достаточно интенсивно экзотермические реакции гидрокрекинга алканов. Поэтому в первом реакторе имеет место наибольший (30 - 50 0С), а в последнем - наименьший перепад (градиент) температур между входом в реактор и выходом из него. Высокий температурный градиент в головных реакторах риформинга можно понизить, если ограничить глубину протекающих в них реакций ароматизации. Это может быть достигнуто при заданном температурном режиме только уменьшшим времени контакта сырья с катализатором, т.е. объема катализатора в них. В этой связи на промышленных установках каталитического риформинга головной реактор имеет наименьший объем катализатора, а хвостовой – наибольший объём. Для трехреакторного блока распределение объема катализатора по ступеням составляет от 1:2:4 до 1:3:7 (в зависимости от химического состава сырья и целевого назначения процесса), а для четырехреакторного оно может быть, например, 1:1,5:2,5:5. Поскольку составляющие суммарный процесс реакции каталитического риформинга имеют неодинаковые значения энергии активации - наибольшее для реакций гидрокрекинга (117 - 220 кДж/моль) и меньшее для реакций ароматизаци (92 - 158 кДж/моль), то при повышении температуре в большей степени ускоряются реакции гидрокрекинга, чем ренакции ароматизации. Поэтому обычно поддерживают повышающийся температурный режим в каскаде реакторов, что позволяет уменьшить роль реакций гидрокрекинга в головных реакторах, тем самым повысить селективность процесса и увеличить выход риформата при заданном его качестве. Температура на входе в реакторы устанавливают в начале реакционного цикла на уровне, обеспечивающем заданное качество риформата - ОЧ или концентрацию аренов. Обычно начальная температура лежит в пределах 480 – 500 0С и лишь при работе в жестких условиях составляет 510 0С. По мере закоксовывания и потери активности катализатора температура на входе в реакторы постепенно повышают, поддерживая стабильное качество катализата, причем среднее значение скорости подъема температуры за межрегенерационный цикл составляет 0,5 - 2,0 0С в месяц. Максимум температуры нагрева сырья на входе в последний реактор со стационарным слоем катализатора достигает 535 0С, а в реакторы установок с непрерывной регенерацией - 543 0С. Давление - основной, наряду с температурой регулируемый параметр, оказывающий существенное влияние на выход и качество продуктов риформинга. При прочих идентичных параметрах с понижением парциального давление водорода возрастает как термодинамически, так и кинетически возможная глубина ароматизации сырья и, что особенно важно, повышается селективность превращений алканов, поскольку снижение давления благоприятствует протеканию реакций ароматизации и тормозит реакции гидрокрекинга. Однако при снижении давления процесса увеличивается скорость дезактивации (Vдез.) катализатора за счет его закоксовывания (Vдез. определяется как скорость подъема темпертуры нагрева сырья на входе в реакторы, обеспечивающая постоянство качества катализата). Скорость дезактивации катаизатора приблизительно обратно пропорциональна давлению (1/р, МПа-1). При давлении 3 - 4 МПа коксообразование подавляется в такой степени, что установки каталитического риформинга со стационарным слоем катализатора могут работать без его регенерации практически более 1 года. Применение би- и полиметаллических катализаторов позволяет проведение процесса при 1,5 - 2,0 МПа без регенерации катализатора в течение 1 года. Кратность циркуляции ВСГ. Этот параметр определяется как отношение объема циркулирующего ВСГ, приведенного к нормальным условиям, к объему сырья, проходящего через реакторы в единицу времени (м3/м3). Учитывая, что в циркулирующем ВСГ концентрация водорода изменяется в широких пределах - от 65 до 90 % об., а молекулярная масса сырья зависит от фракционного состава и химического состава, предпочтительнее пользоваться мольным отношением водород : сырье (иногда моль водорода на моль углерода сырья). С увеличением мольного отношения водород : сырье (Мот) снижается скорость дезактивации катализаторов каталитического риформинга и, следовательно, удлиняется межрегенерационный цикл. Однако увеличение Мот КВСГ связано со значительными энергозатратами, ростом гидравлического сопротивления и объема аппаратов и трубопроводов. Выбор этого параметра производят с учетом стабильности катализатоpa, качества сырья и продуктов, жесткости процесса и заданной продолжительности межрсгенерационного цикла. При использовании на установках со стационарным катализатором полимегаллических катализаторов мольное отношение водород: сырье, равное 5 :6, обеспечивает длительность межрегснерационного цикла до 12 месяцев. На установках с непрерывной регенерацией катализатоpa Мот поддерживается на уровне 4 - 5 и при интенсификации блока регенерации катализатоpa может быть снижено до 3. С наибольшей скоростью дезактивация катализатоpa происходит обычно в последнем реакторе вследствие высокого содержания в реакционной среде аренов и более жесткого режима каталитического риформинга. Объемная скорость подачи сырья влияет на процесс каталитического риформинга как параметр, обратный времени контакта сырья с катализатором. В соответствии с закономерностями химической кинетики с увеличением объемной скорости (т.е. уменьшением времени контакта) сырья снижается глубина реакций ароматизации и более значительно реакций гидрокрекинга алканов. При этом понизится выход продуктов гидрокрекинга - легких углеводородных газов и кокса на катализаторе. Арены будут образовываться преимущественно за счет реакций дегидрирования цикланов, протекающих значительно быстрее других. В результате повышение объемной скорости подачи сырья приводит: - к увеличению выхода риформата, но с пониженным ОЧ и меньшим содержанием аренов; - снижению выхода ВСГ с более высокой концентрацией водорода; - повышению селективности процесса и удлинению продолжительности межрегенерационного цикла. С другой стороны, при снижении объемной скорости сырья снижается производительность установок каталитического риформинга по сырью. Оптимальное значение объемной скорости устанавливают с учетом качества сырья каталитического риформинга, жесткости процесса и стабильности катализаторa. Обычно объемная скорость в процессах риформирования бензинов составляет 1,5 - 2,0 ч-1. Содержание хлора в катализаторе. Стабильная активность катализаторов каталитического риформинга, кислотньм промотором которого является хлор, возможна только при его достаточном содержании на катализаторе и низкой влажности в реакционной системе. Объемное содержание влаги в циркулируемом ВСГ поддерживается обычно на уровне (10 - 30)·10-6. Хлорирование и дехлорирование носителя катализатоpa является равновесным процессом: содержание хлора в катализаторе зависит от мольного отношения водяной пар : хлороводород в газовой фазе. Потери хлора катализатором при окислительной его регенерации восполняются в процессе оксихлорирования подачей хлора за 2 - 10 ч-1 при 500 – 520 0С в количестве 0,5 - 1,5 % от массы катализатоpa. Потери хлора при пусковых операциях (сушка и восстановление катализатоpa, начало сырьевого цикла) восполняют за несколько часов подачей 0,1 - 0,3 % хлора от массы катализатоpa в поток сырья или ВСГ при температуре 350 – 500 0С. Для поддержания оптимальной концентрации хлора в катализаторе в сырьевом цикле хлор можно подавать периодически или непрерывно с дозировкой 1 - 5 мг/ кг сырья (в виде хлорорганических соединений, например СС14, С2Н4С12). |