نسخة рифират хессо джван22. Гиппокамп
Скачать 36.37 Kb.
|
Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования <<Новгородский государственный университет имени Ярослава Мудрого>> Институт медицинского образования Реферат на тему: «« Гиппокамп » Студент_ Хессо Джван группы – 0325 Преподаватель – Лейфер Олеся Викторовна Великий Новгород 2021 План: Введение 1. Общее описание и строение гиппокампа……………………… 2. Электрическая активность гиппокампа……………………….. 3. Гиппокамп и память………………………………………………... 4. Гиппокамп и эмоции………………………………………………. 5. Роль гиппокампа в быстром научении……………………… 6. Гиппокамп и восприятие пространства……………………... 7. Искусственный гиппокамп……………………………………… 8. Используемая литература……………………………………… 1.Общее описание и строение гиппокампа Гиппокамп (hippocampus) расположен в глубине височных долей мозга и является основной структурой лимбической системы. Морфологически гиппокамп представлен стереотипно повторяющимися модулями, связанными между собой и с другими структурами. Модульное строение обусловливает способность гиппокампа генерировать высокоамплитудную ритмическую активность. Связь модулей создает условие циркулирования активности в гиппокампе при обучении. При этом возрастает амплитуда синаптических потенциалов, увеличиваются нейросекреция клеток гиппокампа, число шипиков на дендритах его нейронов, что свидетельствует о переходе потенциальных синапсов в активные. Многочисленные связи гиппокампа со структурами как лимбической системы, так и других отделов мозга определяют его многофункциональность. Гиппокамп входит в гиппокамповую формацию, включающую, помимо него, зубчатую фасцию, субикулум, пресубикулум и энторинальную кору, и является ключевой структурой лимбической системы мозга. Собственно гиппокамп (или Аммонов рог) представляет собой плотную ленту клеток, тянущуюся в переднезаднем направлении вдоль медиальной стенки нижнего рога бокового желудочка мозга. Основные нервные клетки гиппокампа представлены пирамидными нейронами и полиморфными клетками, большинство из которых являются вставочными нейронами с отростками, не выходящими за пределы гиппокампа. Являясь древней корой, гиппокамп состоит из 3 основных слоев: полиморфного слоя (stratum oriens), слоя пирамидных нейронов (stratum pyramidale) и молекулярного слоя (stratum radiatum и stratum lacunosum-moleculare) Слой, лежащий на вентрикулярной поверхности, alveus, состоит в основном из идущих в горизонтальном направлении миелинизированных аксонов пирамидных нейронов гиппокампа. Базальные дендриты и начальные сегменты аксонов находятся в полиморфном слое. Далее следует слой пирамидных нейронов, а затем stratum radiatum, содержащий стволы апикальных дендритов, и stratum lacunosum-moleculare, где располагаются претерминальные и терминальные ветвления апикальных дендритов. Четкая организация цитоархитектоники гиппокампа сохраняется на всем его фронтокаудальном протяжении, что позволяет говорить о его ламинарной организации. Особенности цитоархитектоники пирамидного слоя гиппокампа послужили основанием для его деления на 4 основных поля, ориентированных в медиолатеральном направлении и обозначаемые как СА1 - СА4. Основными полями собственно гиппокампа считаются поля СА1 и СА3. Поле СА1 отличается небольшими, плотно расположенными в 2 слоя пирамидными нейронами, клетки этого слоя в СА3 области имеют очень крупные размеры, расположены не так плотно. Апикальные дендриты пирамид СА1 идут на значительном расстоянии от клетки в виде единого ствола и не имеют крупных шипиковых выростов. Мощные апикальные дендриты пирамид СА3 области дают бифуркацию недалеко от клеточного тела и покрыты гигантскими шипиковыми выростами. Эти гигантские шипики пирамидных нейронов СА3 образуют синаптические контакты с аксонами гранулярных нейронов зубчатой фасции, мшистыми волокнами. Аксоны пирамидных нейронов СА3 дают так называемые коллатерали Шаффера, контактирующие с апикальными дендритами пирамид СА1. Эти связи являются двумя основными ассоциативными путями гиппокампа, соединяющими воедино его основные элементы, и составляют так называемый трисинаптический путь. Как система мшистых волокон, так и основной афферентный вход зубчатой фасции (перфорантный путь) характеризуются строгой топической организацией. Таким образом, гиппокамп можно представить как набор последовательных морфофункциональных сегментов, которые могут функционировать относительно независимо. Ламинарная организация свойственна также терминальным полям афферентных входов и комиссуральных связей с контралатеральным гиппокампом. Наиболее важные афферентные входы - от септума и энторинальной коры - заканчиваются в основном в СА3 области гиппокампа, тогда как пирамидные нейроны СА1 области получают афферентный вход непосредственно от энторинальной коры. Энторинальная кора в свою очередь получает афферентные входы от лимбической коры и полимодальных ассоциативных зон неокортекса. Были выявлены также прямые эфферентные связи от гиппокампа к височной области неокортекса и префронтальной коре. Септум связан с гиппокампом двусторонними связями и является чрезвычайно важным релейным звеном на путях между гиппокампом и структурами ствола мозга и гипоталамуса. Другие эфферентные пути гиппокампа направляются в основном в структуры лимбического круга. Таким образом, СА3-область гиппокампа является точкой конвергенции потоков информации от ассоциативной коры и филогенетически древних образований ствола мозга. Основой функционирования нейронных ансамблей гиппокампа считают глутаматергическую нейромедиацию, поскольку и пирамидные нейроны, и гранулярные клетки зубчатой фасции являются глутаматергическими. Однако существенную роль в регуляции функциональной активности гиппокампа играют практически все известные нейротрансмиттерные системы. Важными модулирующими входами от септума являются ГАМК - и холинергические афференты. СА3 область гиппокампа получает прямые входы от норадренергического голубого пятна и серотонинергических ядер шва. Вход от ядер ретикулярной формации ствола мозга осуществляется опосредованно, через холинергические ядра переднего мозга. Внутри гиппокампа тормозной контроль глутаматергических пирамидных нейронов осуществляют полиморфные вставочные нейроны, большинство из которых являются ГАМК-эргическими. Последние подразделяются на несколько подтипов по содержанию в них кальцийсвязывающих белков: парвальбумин-, калбиндин- и калретинин-содержащие интернейроны. Парвальбуминовые нейроны иннервируют преимущественно (но не исключительно) тела пирамидных нейронов. Особый подкласс парвальбумин-содержащих нейронов, так называемые «канделябровидные клетки», иннервируют начальные сегменты аксонов пирамидных клеток гиппокампа. Калбиндин-содержащие нейроны образуют синаптические контакты преимущественно на проксимальных апикальных дендритах пирамидных клеток. Калретинин-содержащие интернейроны в основном специализируются на тормозном контроле других ГАМК-эргических нейронов. Как уже говорилось, СА3 область занимает особое место в структурно-функциональной организации гиппокампа, так как именно на нейроны этой области гиппокампа поступают основные потоки информации от высших ассоциативных зон коры, а также от стволовых и подкорковых структур мозга. Функциональная организация нейронных ансамблей в СА3 области гиппокампа имеет ряд специфических особенностей. Пирамидные нейроны СА3 связаны друг с другом посредством множества возвратных связей, в результате чего каждый из них способен влиять на разряд множества других нейронов. ГАМК-ергические интернейроны СА3 также получают возбуждающий глутаматергический вход от пирамидных нейронов этой области и от коллатералей мшистых волокон (аксонов гранулярных нейронов зубчатой фасции), иннервирующих апикальные дендриты пирамидных нейронов. Благодаря такой системе связей тормозные нейроны гиппокампа способны осуществлять как прямое, так и обратное торможение пирамидных нейронов. Эта сложно организованная сеть может контролировать пирамидные нейроны и обеспечивать временную структуру, необходимую для координации активности нейрональных ансамблей гиппокампа. Поскольку тормозные интернейроны модулируют как афферентные входы, так и эфферентную активность и возбудимость пирамидных глутаматергических нейронов, они способны синхронизировать большие клеточные популяции. Считают, что, будучи основной мишенью подкорковых путей, именно тормозные интернейроны способны осуществлять мотивационный, эмоциональный и автономный контроль активности гиппокампа. Тормозной контроль активности глутаматергических пирамидных нейронов является также основой процессов приобретения и воспроизведения памяти. 2.Электрическая активность гиппокампа Выраженными и специфическими являются электрические процессы в гиппокампе. Активность здесь чаще всего характеризуется быстрыми бета-ритмами (14-30 в секунду) и медленными тета-ритмами (4-7 в секунду). Если с помощью фармакологических методов в новой коре ослабить десинхронизацию на новое раздражение, то в гиппокампе затрудняется возникновение тета-ритма. Раздражение ретикулярной формации ствола мозга усиливает выраженность тета-ритма в гиппокампе и высокочастотных ритмов в новой коре. Значение тета-ритма заключается в том, что он отражает реакцию гиппокампа, а тем самым - его участие в ориентировочном рефлексе, реакциях настороженности, повышения внимания, в динамике обучения. Тета-ритм в гиппокампе наблюдается при высоком уровне эмоционального напряжения - страхе, агрессии, голоде, жажде. Вызванная активность в гиппокампе возникает на раздражение различных рецепторов и любой из структур лимбической системы. Разносенсорные проекционные зоны в гиппокампе перекрываются. Это обусловлено тем, что большинство нейронов гиппокампа характеризуется полисенсорностью, т.е. способностью реагировать на световые, звуковые и другие виды раздражений. Нейроны гиппокампа отличаются выраженной фоновой активностью. В ответ на сенсорное раздражение реагирует до 60% нейронов гиппокампа. 3.Гиппокамп и память По мере изучения гиппокампа менялось представление о его функциях. Сначала он рассматривался как кора обонятельного мозга. Затем широко распространилась точка зрения, что гиппокамп ответствен за формирование долговременной памяти. Первые свидетельства о связи гиппокампа с памятью были получены при нейрохирургических операциях на мозге. По-видимому, гиппокамп непричастен к формированию ни декларативной, ни процедурной памяти, а только к манипуляции следами памяти. Исключительная роль гиппокампа в процессах памяти и обучения у человека и животных в настоящее время является доказанным фактом во многом благодаря работам российских исследователей. После появления таких методов, как регистрация электрической активности единичных нейронов, локальных микроразрушений и т.д., стало возможным исследование роли отдельных областей и даже отдельных типов нейронов гиппокампа в процессах приобретения, хранения и воспроизведения памяти. Суммируя данные многочисленных клинических наблюдений за пациентами с разрушенным гиппокампом, О.С. Виноградова пришла к заключению, что разрушение гиппокампа приводит к нарушениям так называемого общего (надмодального) фактора памяти. Для понимания роли гиппокампа в деятельности мозга важно подчеркнуть, что гиппокамп имеет мощные связи с ассоциативной корой. Неокортикально-лимбические проекции от отдельных сенсорных областей коры дублируются связями от высших областей конвергенции всех модальностей (нижнетеменная область и верхняя часть верхней височной извилины в задней части полушарий, а также фронтоорбитальная кора, аркуатная борозда и лобные полюса в передней их части). Считают, что задние ассоциативные и конвергентные области связаны с гнозисом, т.е. «объективным» приемом внешней информации, ее обработкой и хранением, тогда как префронтальные области - не только с праксисом, но и с субъективным отношением к внешней информации, к собственным действиям и их результатам. Такая двусторонняя связь этих областей с лимбической системой необходима для нормального функционирования системы фиксации нового опыта и воспроизведения старого. По мнению Пенфилда (канадский нейрофизиолог и нейрохирург) больные с удалёнными (в лечебных целях) гиппокампами полностью сохраняют свой интеллект, способность производить математические операции и т.п. Однако они не способны усваивать новую информацию. Такие больные, по сообщениям американских учёных, не могут смотреть телевизионные фильмы, которые прерываются рекламой, так как теряют связь между отдельными частями фильма. Следует иметь в виду, что при разрушении гиппокампа, другие нервные центры и структуры берут на себя и компенсируют, хотя и не полностью, функции памяти. Кэрол Барнс и её коллеги из университета Аризоны, наблюдая за крысами, заметили, что более взрослые особи страдают нарушениями памяти - прямо как пожилые люди. В ходе её эксперимента 11 молодых и 11 пожилых животных приучили находить корм в нескольких лабиринтах. Параллельно проходили наблюдения за электрической активностью гиппокампа - с помощью вживленного прямо в мозг зонда. Затем замеры повторились - ночью, когда крысы спали. В итоге юниоры показали уровень активности, аналогичный тому, когда они пробирались по лабиринту. А вот крысы в возрасте - нет. На этом основании нейрофизиологи сделали вывод, что у них процесс воспроизведения воспоминаний нарушен. Дальнейшие опыты показали, что молодежь в целом лучше ориентировалась в ходах и выходах в серии из нескольких раундов «пищевого ориентирования». Проводя аналогию с человеком, авторы работы предполагают, что часть краткосрочных воспоминаний у пожилых теряется во сне. И виной тому - недостаточно активная работа гиппокампа по «повторному показу» пережитого опыта. По мнению Лизы Маршалл из университета Любека, постоянная полудрема старых людей - как раз попытка компенсировать недостаточную глубину запоминания текущих событий. В другом исследовании был использован лабиринт, устроенный с учетом особенностей поведения крыс при поисках пищи. В конце каждой из ветвей лабиринта лежала еда, так же как и в естественных условиях к пище могут вести много путей. Проблема заключалась в том, что крыса должна была запоминать, где она уже побывала, и выбирать путь, ведущий к еще не съеденной пище. Обычно крысам требовалось всего несколько попыток, чтобы хорошо изучить лабиринт и никогда не повторять своих прежних маршрутов. Однако после удаления гиппокампа крысы часто пытались отыскать пищу в уже пройденных ими ответвлениях лабиринта: по всей видимости, они не могли запомнить, где они уже побывали, а где нет. Крысы как бы утратили «рабочую память». То, что гиппокамп каким-то образом связан с «рабочей», или кратковременной, памятью, подтверждают и различные уровни активности этой структуры мозга при классическом обусловливании. Например, при выработке условного рефлекса моргания у кроликов нейронная активность в гиппокампе очень мала или вообще отсутствует. Такой рефлекс может образоваться у кроликов даже после удаления гиппокампа. Но если гиппокамп подвергнуть достаточно сильной электрической стимуляции, что приведет к аномальной, эпилептиформной активности нейронов, то, как показали Ричард Томпсон и его коллеги, у животного уже не сможет выработаться рефлекторный ответ. (Таким образом, по крайней мере, в этом отношении аномальный гиппокамп хуже, чем его полное отсутствие.) Если между звучанием музыкального тона и воздействием воздушной струи сделать паузу, то во время этой паузы нейроны гиппокампа будут генерировать импульсы, как будто гиппокамп хранит звук в рабочей памяти вплоть до появления второго стимула (струи воздуха). Когда Томпсон усложнил задачу - сначала приучил животное реагировать на один стимул и не отвечать на другой, а затем стал переучивать его на противоположную задачу, в гиппокампе была зарегистрирована массивная нейронная активность. Видимо, усложнение эксперимента потребовало усиленной деятельности нервных клеток. Как бы то ни было, роль гиппокампа в образовании простого условного мигательного рефлекса и роль его в запоминании «пространственной карты», т.е. в «рабочей» памяти, - две совершенно разные вещи. Недавно было показано, что клетки гиппокампа, подвергавшиеся неоднократно электростимуляции, продолжают давать разряд спустя недели после ее прекращения. Этот метод-метод долговременной потенциации - позволяет вызвать нейронную активность, напоминающую ту, которая наблюдается у животного во время обычного для него процесса обучения. Многие нейроны после повторной стимуляции становятся менее активными. Так происходит, например, в процессе привыкания у аплизии. Ученые полагают, что повышение возбудимости нейронов гиппокампа после повторной стимуляции может быть обусловлено стойкими изменениями в синапсах, лежащими в основе процесса научения. Действительно, после долговременной потенциации в нейронах обнаруживаются структурные изменения. В некоторых исследованиях получены данные о том, что верхушки дендритных шипиков расширяются; в других - о том, что возрастает число синапсов на дендритах. Подобные изменения в строении нейронов, а также в количестве и качестве соединений между ними могли бы быть структурной основой некоторых видов научения и памяти. Окончательные выводы сделать пока невозможно, однако исследования продолжаются. Американские нейробиологи обнаружили, что в префронтальной коре мозга крысы во время сна происходит семикратное ускоренное воспроизведение серий нервных импульсов, которые наблюдались во время бодрствования. Такое «прокручивание» дневных впечатлений, по-видимому, необходимо для формирования устойчивых воспоминаний. Авторы полагают, что обнаруженный ими процесс представляет собой «переписывание» информации из кратковременной памяти, за которую отвечает гиппокамп, в долговременную память, находящуюся под управлением префронтальной коры. На сегодняшний день ученые уже довольно хорошо разобрались в клеточной и молекулярной природе памяти, а также в том, какие отделы мозга и в какой последовательности участвуют в запоминании, хранении и последующем воспроизведении (вспоминании) информации. Известно, что многие ключевые процессы, связанные с закреплением воспоминаний («консолидация памяти») происходят во сне, и важнейшую роль в этих процессах играет гиппокамп. Если этот маленький отдел мозга выходит из строя, люди (или животные) теряют способность что-либо запоминать, хотя все старые воспоминания у них сохраняются. Экспериментально показано, что нейроны гиппокампа во сне воспроизводят те же серии нервных импульсов, которые наблюдались во время бодрствования (например, во время обучения какой-нибудь задаче). По-видимому, это повторное проигрывание дневных переживаний необходимо для того, чтобы свежеприобретенный опыт благополучно «переписался» из гиппокампа в те отделы мозга, которые отвечают за долговременную память (это в первую очередь кора больших полушарий). Принцип «повторения» лежит в основе функционирования нервной системы на самом базовом клеточном уровне. Однако после того как гиппокамп выполнил свою функцию, воспоминания продолжают храниться в коре уже без его помощи. В процессе активизации устоявшихся, «консолидированных» воспоминаний ключевую роль играет так называемая медиальная префронтальная кора (МПФК). Когда мы вспоминаем события, случившиеся только что, гиппокамп активизируется сильно, а МПФК - слабо. Но если нам нужно вспомнить что-то более давнее, наблюдается обратная картина: нейроны МПФК работают очень активно, а нейроны гиппокампа - гораздо слабее. Эта закономерность подтверждена опытным путем и на крысах, и на людях. Кроме того, известно, что повреждения МПФК ведут к нарушениям механизма вспоминания давних событий. Некоторые объекты из кратковременной памяти переводятся в долговременную, где они могут сохраняться часами или даже на протяжении всей жизни. Одной из систем мозга, необходимых для осуществления такого переноса, является гиппокамп. Эта функция гиппокампа выявилась, когда один больной перенес операцию на мозге. В литературе, посвященной описанию его послеоперационного состояния, этого больного именуют инициалами Н.М. В каждой из височных долей мозга имеется по одному гиппокампу. Пытаясь облегчить тяжелые эпилептические припадки, врачи удалили у Н.М. оба гиппокампа. (После того, как стали ясны неблагоприятные последствия такого метода лечения, он больше никогда не применялся.) После операции Н.М. стал жить только в настоящем времени. Он мог помнить события, предметы или людей ровно столько, сколько они удерживались в его памяти. Если вы, поболтав с ним, выходили из комнаты и через несколько минут возвращались, он не помнил, что видел вас когда-нибудь прежде. Н.М. хорошо помнил те события в своей жизни, которые происходили до операции. Информация, хранившаяся в его долговременной памяти, во всяком случае, та, которая уже находилась там за один - три года до операции, не была утрачена. Тот факт, что амнезия у Н.М. распространялась на события, происшедшие за -2 года до операции, но не на более ранние, указывает на то, что следы памяти, по-видимому, могут претерпевать изменения спустя какое-то время после их образование. Гиппокамп находится в височной доле мозга. Судя по не которым данным, гиппокамп и медиальная часть височной доли, играют роль в процессе закрепления, или консолидации, следов памяти. Под этим подразумеваются те изменения, физические и психологические, которые должны произойти в мозгу, для того чтобы полученная им информация могла перейти в постоянную память. Даже после того, как информация уже поступила в долговременную память, некоторые ее части могут подвергаться преобразованию и даже забываться, и только после этого реорганизованный материал отправляется на постоянное хранение. По-видимому, гиппокамп и медиальная височная область участвуют в формировании и организации следов памяти, а не служат местами постоянного хранения информации. Н.М., у которого эта область мозга была разрушена, хорошо помнил события, происшедшие более чем за 3 года до операции, и это показывает, что височная область не является местом длительного хранения следов. Однако она играет роль в их формировании, о чем свидетельствуют потеря у Н.М. памяти на многие события, происходившие в последние 3 года до операции. Подобные данные получены и при исследовании больных после электрошоковой терапии (ЭШТ). Известно, что электрошок оказывает особенно разрушительное воздействие на гиппокамп. После электрошока больные, как правило, страдают частичной амнезией на события, происходившие в течение нескольких предшествующих лечению лет. Память о более давних событиях сохраняется полностью. В 1887 г. русский психиатр С.С. Корсаков описал грубые расстройства памяти у больных алкоголизмом. Посмертно у них были обнаружены дегенеративные повреждения гиппокампа. Нарушение памяти проявлялось в том, что больной помнил события отдаленного прошлого, в том числе детства, но не помнил о том, что произошло с ним несколько дней или даже минут тому назад (синдром Корсакова). Например, он не мог запомнить своего лечащего врача: если врач выходил из палаты на 5 мин, больной его не узнавал при повторном посещении. Обширные повреждения гиппокампа у животных характерным образом нарушают протекание условнорефлекторной деятельности. Например, крысу довольно легко научить находить приманку в 8-лучевом лабиринте (лабиринт представляет собой центральную камеру, от которой радиально отходят 8 коридоров) только в каждом втором или четвертом рукаве. Крыса с поврежденным гиппокампом не обучается этому навыку и продолжает обследовать каждый рукав. Таким образом, гиппокамп является структурой, играющей большую роль в осуществлении когнитивных функций. В связи с этим он привлекает внимание исследователей в случаях развития когнитивного дефицита, прежде всего при болезни Альцгеймера и других нейродегенеративных заболеваниях, а также при развитии такого дефицита при эндогенных психозах, в том числе при шизофрении. 4.Гиппокамп и эмоции Гиппокамп находится по соседству с миндалиной. Роль его в создании эмоций всё ещё не очень ясна, но тесная связь с миндалиной позволяет предположить, что гиппокамп тоже участвует в этом процессе. Анализ участия гиппокампа в формировании положительных и отрицательных эмоциональных состояний предложен экспериментами Л.А. Преображенской. Опыты наглядно показывают, что роль гиппокампа в генезе эмоционального напряжения сводится к оценке формальной новизны действующих на животное стимулов. Около поясной извилины расположен свод - система волокон, идущих в обоих направлениях; он повторяет изгиб поясной извилины и соединяет гиппокамп с различными структурами мозга, в том числе и с Hpt*. Удаление у обезьян височных долей, совместно с гиппокампом и миндалиной, приводило к исчезновению чувства страха, агрессивности, затруднению в различении качества пищи и её пригодности для еды. Таким образом, целостность височных структур мозга необходима для сохранения нормального эмоционального статуса, связанного с агрессивно - оборонительным поведением. Способность гиппокампа реагировать на сигналы маловероятных событий позволяет рассматривать его как ключевую структуру для реализации компенсаторной, замещающей недостаток информации функции эмоций. Разрушение гиппокампа не влияет на эмоциональное поведение. 5.Роль гиппокампа в быстром научении Экспериментальные данные, полученные в исследовании локальных разрушений мозговых структур, в целом согласуются с цитированными выше данными из клинической литературы: гиппокамп, по всей вероятности, играет важную роль в научении и памяти. Hpt - это высший центр регуляции внутренней среды организма. В нём есть нейроны, которые активируются или, напротив, снижают активность при изменениях уровня глюкозы в крови и ликворе, изменениях осмотического давления, уровня гормонов и т.д. Другой способ оповещения Hpt-ом об изменениях внутренней среды представлен нервными афферентными путями, собирающими импульсацию от рецепторов внутренних органов. Изменения параметров внутренней среды отражают ту или иную потребность, а Hpt, в соответствии с этим, формирует мотивационную доминанту. Нейроны латерального Hpt взаимодействуют с некоторыми структурами лимбической системы, а через передние ядра таламуса влияют на ассоциативную теменную область коры и двигательную кору, инициируя тем самым замысел движений. И хотя вопрос о точном характере этой роли остается дискуссионным, повреждение гиппокампа нарушает усвоение или запоминание нескольких различных поведенческих задач грызунами и приматами. Большинство публикаций об эффектах повреждения гиппокампа у крыс касается его предполагаемой роли в пространственном научении. Однако проведено значительное количество исследовательской роли гиппокампа в других видах научения, часть которых имеет более прямое отношение к амнестическому синдрому, наблюдаемому у людей с поражениями медиальных височных долей, и к экспериментальным эффектам разрушения гиппокампа у низших обезьян. 6.Гиппокамп и восприятие пространства Имплантируя электроды в отдельные нейроны головного мозга крысам, ученые узнали, что некоторые нейроны гиппокампа, вероятно, реагируют только тогда, когда животное находится в определенном участке знакомого окружения. Клетка, активность которой регистрировали, оставалась в покое до тех пор, пока животное не оказывалось в определенном месте. В этот, и только в этот, момент нейрон начинал давать быстрый разряд. Как только крыса проходила мимо этого места, нейрон затихал. Таким образом, по крайней мере, у крыс гиппокамп, очевидно, играет важную роль в усвоении «пространственной карты» окружающего мира. Пространственная карта, однако, не аналогична дорожной карте. Это скорее своеобразный фильтр, через который проходят сенсорные события, уже ранее переработанные корой головного мозга. Гиппокамп у крысы в определенном смысле «узнает» то место в пространстве, где крыса уже когда-то была. Если гиппокамп поврежден, способность крыс ориентироваться в лабиринте сильно нарушается. 7.Искусственный гиппокамп гиппокамп память восприятие научение Начиная с 2003 года, в Университете Калифорнии в Лос-Анджелесе (США) группой ученых под руководством Теодора Бергера создаётся искусственный гиппокамп крысы. При моделировании предполагается, что основная функция гиппокампа - это кодирование информации для сохранения в других отделах мозга, играющих роль долговременной памяти. Предполагается также, что ввиду очень большой схожести этого отдела мозга у млекопитающих адаптация к функции гиппокампа человека будет произведена достаточно быстро. Так как ученым были неизвестны методы кодирования, то он был смоделирован как совокупность нейронных сетей, функционирующих параллельно. Выдвинута гипотеза, что такое возможное строение уже настоящего гиппокампа дает возможность при травме обойти поврежденную область целиком. Конструктивно аналог гиппокампа выполнен в виде компьютерного чипа с двумя пучками электродов: входным - для регистрации электрической активности других отделов мозга и выходным - для направления электрических сигналов в мозг. К августу 2006 года создана математическая модель гиппокампа крысы. В будущем планируется сделать искусственный гиппокамп крысы и испытать его на живых крысах, а в ещё более отдалённом будущем - искусственный гиппокамп человека. Планируется сделать искусственный гиппокамп в виде протеза, крепящегося на черепной коробке снаружи. 8.Используемая литература 1. Адам Д. Восприятие, сознание, память. Размышления биолога: Пер. с англ. /Перевод Алексеенко Н.Ю.; Под ред. и с предисл. Е.Н. Соколова. - М.: Мир, 1983. - 152 с., ил. 2. Блум Ф., Лейзерсон А., Ховстедтер Л. Мозг, разум, поведение: Пер. с англ. - М.: Мир, 1988. - 248 с., ил. 3. Биологический энциклопедический словарь - 2-е изд., испр. - М.: Сов. энциклопедия, 1989. - 864 с., ил. 4. Николов Н., Нешев Г. Загадка тысячелетия: Пер. с болг./ Под ред. М.И. Самойлова; Предисл. Н.А. Тушмаловой. - М.: Мир, 1988 - 144 с., ил. (В мире науки и техники) 5. Роуз С. Устройство памяти. От молекул к сознанию: Пер. с англ. - М.: Мир, 1985 - 384 с., ил. |