Главная страница

Математическое описание хаоса. Говоря хаос, мы, обычно, подразумеваем полное отсутствие порядка, абсолютную неупорядоченность и случайность. С математической точки зрения, хаос и порядок понятия не взаимоисключающие


Скачать 26.51 Kb.
НазваниеГоворя хаос, мы, обычно, подразумеваем полное отсутствие порядка, абсолютную неупорядоченность и случайность. С математической точки зрения, хаос и порядок понятия не взаимоисключающие
Дата29.03.2022
Размер26.51 Kb.
Формат файлаdocx
Имя файлаМатематическое описание хаоса.docx
ТипДокументы
#423753

b

Говоря «хаос», мы, обычно, подразумеваем полное отсутствие порядка, абсолютную неупорядоченность и случайность. С математической точки зрения, хаос и порядок – понятия не взаимоисключающие. Теория хаоса (есть что-то завораживающие в названиях математических теорий) – достаточно молодая математическая область, создание которой приравнивают по значимости открытий ХХ века к созданию квантовой механики. Хаос случается в нелинейных динамических системах. Иначе говоря, любой процесс, который протекает со временем, может быть хаотичным (например, высота дерева, температура тела или популяция мадагаскарских тараканов)

Понятие хаоса относится к так называемой теории динамических систем. Динамическая система состоит из двух частей: понятия состояния (существенной информации о системе) и динамики (правила, описывающего эволюцию системы во времени). Эволюцию можно наблюдать в пространстве состояний, или фазовом пространстве, — абстрактном пространстве, в котором координатами служат компоненты состояния. При этом координаты выбираются в зависимости от контекста. В случае механической системы это могут быть положение и скорость, в случае экологической модели — популяции различных биологических видов.

Хороший пример динамической системы — простой маятник. Его движение задаётся всего двумя переменными: положением и скоростью. Таким образом, его состояние — это точка на плоскости, координаты которой — положение маятника и его скорость. Эволюция состояния описывается правилом, которое выводится из законов Ньютона и выражается математически в виде дифференциального уравнения. Когда маятник качается взад-вперёд, его состояние — точка на плоскости — движется по некоторой траектории («орбите»). В идеальном случае маятника без трения орбита представляет собой петлю; при наличии трения орбита закручивается по спирали к некоторой точке, соответствующей остановке маятника.




Слайд 1. Фазовое пространство даёт удобное средство для наглядного представления поведения динамической системы. Это абстрактное пространство, координатами в котором являются степени свободы системы. Например, движение маятника (вверху) полностью определено его начальной скоростью и положением. Таким образом, его состоянию отвечает точка на плоскости, координатами которой являются положение и скорость маятника (внизу). Когда маятник качается, эта точка описывает некоторую траекторию, или «орбиту», в фазовом пространстве. Для идеального маятника без трения орбита представляет собой замкнутую кривую (внизу слева), в противном случае орбита сходится по спирали к точке (внизу справа).

Динамическая система может развиваться либо в непрерывном времени, либо в дискретном времени. Первая называется потоком, вторая — отображением (иногда каскадом). Маятник непрерывно движется от одного положения к другому и, следовательно, описывается динамической системой с непрерывным временем, т.е. потоком. Число насекомых, рождающихся каждый год в определённом ареале, или промежуток времени между каплями из подтекающего водопроводного крана более естественно описывать системой с дискретным временем, т.е. отображением.

Чтобы узнать, как развивается система из заданного начального состояния, нужно совершить бесконечно малое продвижение по орбите, а для этого можно воспользоваться динамикой (уравнениями движения). При таком методе объём вычислительной работы пропорционален времени, в течение которого мы хотим двигаться по орбите. Для простых систем типа маятника без трения может оказаться, что уравнения движения допускают решение в замкнутой форме, т.е. существует формула, выражающая любое будущее состояние через начальное состояние. Такое решение даёт «путь напрямик», т.е. более простой алгоритм, в котором для предсказания будущего используется только начальное состояние и окончательное время и который не требует прохода через все промежуточные состояния. В таком случае объём работы, затрачиваемой на прослеживание движения системы, почти не зависит от конечного значения времени. Так, если заданы уравнения движения планет и Луны, а также положения и скорости Земли и Луны, то можно, например, на много лет вперёд предсказать затмения.

Благодаря успешному нахождению решений в замкнутой форме для многих разнообразных простых систем на ранних стадиях развития физики появилась надежда, что для всякой механической системы существует такое решение. Теперь известно, что это, вообще говоря, не так. Непредсказуемое поведение хаотических динамических систем нельзя описать решением в замкнутой форме. Значит, при установлении их поведения у нас нет никакого «пути напрямик».

И всё-таки фазовое пространство даёт мощное средство для изучения хаотических систем, так как оно позволяет представить их поведение в геометрической форме. Так, в нашем примере маятника с трением, который в конце концов останавливается, его траектория в фазовом пространстве приходит в некоторую точку. Это неподвижная точка; так как она притягивает близлежащие орбиты, её называют притягивающей неподвижной точкой, или аттрактором (от англ. to attract — притягивать. — Перев.). Если сообщить маятнику небольшой толчок, его орбита вернётся в неподвижную точку. Всякой системе, которая с течением времени приходит в состояние покоя, отвечает неподвижная точка в фазовом пространстве. Это явление имеет весьма общий характер: потери энергии из-за трения или, например, вязкости приводят к тому, что орбиты притягиваются к небольшому множеству фазового пространства, имеющему меньшую размерность. Всякое такое множество называется аттрактором. Грубо говоря, аттрактор отвечает установившемуся поведению системы — тому, к которому она стремится.







Слайд 2. Аттракторы — это геометрические структуры, характеризующие поведение в фазовом пространстве по прошествии длительного времени. Грубо говоря, аттрактор — это то, к чему система стремится прийти, к чему она притягивается. Здесь аттракторы показаны синим цветом, а начальные состояния — красным. Траектории, выйдя из начальных состояний, в конце концов приближаются к аттракторам. Самый простой тип аттрактора — неподвижная точка (вверху слева). Такой аттрактор соответствует поведению маятника при наличии трения; маятник всегда приходит в одно и то же положение покоя независимо от того, как он начал колебаться (см. правую половину рис. 2). Следующий, более сложный аттрактор — предельный цикл (вверху в центре), который имеет форму замкнутой петли в фазовом пространстве. Предельный цикл описывает устойчивые колебания, такие, как движение маятника в часах или биение сердца. Сложному колебанию, или квазипериодическому движению, соответствует аттрактор в форме тора (вверху справа). Все три аттрактора предсказуемы: их поведение можно прогнозировать с любой точностью. Хаотические аттракторы соответствуют непредсказуемому движению и имеют более сложную геометрическую форму. Три примера хаотических аттракторов изображены в нижнем ряду; они получены (слева направо) Э. Лоренцем, О. Рёсслером и одним из авторов (Шоу) соответственно путём решения простых систем дифференциальных уравнений с трёхмерным фазовым пространством.







Слайд 3. Хаотический аттрактор имеет гораздо более сложное строение, чем предсказуемые аттракторы — точка, предельный цикл или тор. В крупном масштабе хаотический аттрактор есть неровная поверхность со складками. Показаны этапы образования хаотического аттрактора на примере аттрактора Рёсслера (справа). Сначала близкие траектории на объекте расходятся экспоненциально (вверху слева); расстояние между соседними траекториями увеличивается примерно вдвое. Чтобы остаться в конечной области, объект складывается (внизу слева): поверхность сгибается и её края соединяются. Аттрактор Рёсслера наблюдался во многих системах, от потоков жидкости до химических реакций; этот факт иллюстрирует максиму Эйнштейна о том, что природа предпочитает простые структуры.

Некоторые системы не останавливаются по прошествии длительного времени, а циклически проходят некоторую последовательность состояний. Пример — часы с маятником, которые заводятся при помощи пружины или гирь. Маятник снова и снова повторяет свой путь. В фазовом пространстве его движению соответствует периодическая траектория, или цикл. Неважно, как маятник запущен в движение — в конце концов он придёт к тому же циклу. Такие аттракторы называются предельными циклами. Другой знакомой всем системой с предельным циклом является сердце. Одна и та же система может иметь несколько аттракторов. Если это так, то разные начальные условия могут привести к разным аттракторам. Множество точек, приводящих к некоторому аттрактору, называется его областью притяжения. Система с маятником имеет две такие области: при небольшом смещении маятника от точки покоя он возвращается в эту точку, однако при большом отклонении часы начинают тикать, и маятник совершает стабильные колебания.

Более сложный аттрактор имеет форму тора (напоминающую поверхность бублика). Такая форма отвечает движению, составленному из двух независимых колебаний, — так называемому квазипериодическому движению. (Физические примеры можно построить при помощи электрических осцилляторов.) Траектория навивается на тор в фазовом пространстве, одна частота определяется временем оборота по малому кругу тора, другая — по большому кругу. Для комбинации более чем двух вращений аттракторами могут быть многомерные торы.

Важное отличительное свойство квазипериодического движения состоит в том, что, несмотря на сложный характер, оно предсказуемо. Хотя траектория может никогда не повторяться точно (если частоты несоизмеримы), движение остаётся регулярным. Траектории, начинающиеся поблизости одна от другой на торе, так и остаются поблизости одна от другой, и долгосрочный прогноз гарантирован.





Слайд 4 Расходимость соседних траекторий является основной причиной того, что хаос ведёт к непредсказуемости. Идеальное измерение определяло бы точку в фазовом пространстве, но реальное измерение не бывает точным, порождая тем самым облако неопределённости. Истинное состояние может оказаться где угодно внутри этого облака. Как показано здесь на примере аттрактора Лоренца, неопределённость начального измерения представлена 10 000 красных точек, расположенных так близко друг к другу, что они неразличимы. По мере того как каждая точка движется в соответствии с уравнениями, облако вытягивается в длинную тонкую нить, которая затем многократно свивается, пока красные точки не распространятся по всему аттрактору. Предсказание стало невозможным: конечное состояние может быть в любом месте аттрактора. Напротив, для предсказуемого аттрактора все конечные состояния неизменно остаются поблизости друг от друга. Числа под картинками указаны в единицах, равных0,005 с.
 




Слайд 5 Хаотические аттракторы являются фракталами: объектами, проявляющими по мере увеличения всё большее число деталей. Хаос естественным образом порождает фракталы. Для того чтобы движение оставалось в конечной области, близлежащие траектории, хоть они и расходятся, должны в конечном счёте изогнуться и пройти поблизости друг от друга. Это повторяется снова и снова, порождая складки внутри складок, и т.д. до бесконечности. В результате хаотические аттракторы имеют очень красивую микроскопическую структуру. М. Хенон из Обсерватории в Ницце (Франция) обнаружил простое правило, по которому растягивается и складывается плоскость, причём так, что каждая точка попадает на новое место. Взяв одну начальную точку, нанесём на график каждую последовательную точку, полученную из предыдущей по правилу Хенона. Найденная в результате геометрическая фигура (a) даёт простой пример хаотического аттрактора. На рисунке b часть, обведённая рамкой, дана с увеличением в 10 раз. При последующих увеличениях (cd) проявляется микроскопическая структура аттрактора. На нижнем рисунке изображена область притяжения аттрактора Хенона.

До недавнего времени были известны лишь перечисленные виды аттракторов: неподвижные точки, предельные точки, предельные циклы и торы. В 1963 году Э. Лоренц из Массачусетского технологического института открыл конкретную систему низкой размерности со сложным поведением. Движимый желанием понять, в чём трудность с прогнозами погоды, он рассмотрел уравнения движения жидкости (они описывают и атмосферные течения) и путём упрощений получил систему ровно с тремя степенями свободы.

Тем не менее эта система вела себя случайным образом и не поддавалась адекватному описанию с помощью какого-нибудь из известных аттракторов. Обнаруженный Лоренцем аттрактор, называемый теперь его именем, стал первым примером хаотического, или странного, аттрактора.

Промоделировав свою простую систему на компьютере, Лоренц выявил основной механизм, который вызывал случайное поведение: микроскопические возмущения накапливаются и влияют на макроскопическое поведение. Две траектории с близкими начальными условиями экспоненциально расходятся в процессе эволюции, так что они проходят рядом лишь совсем недолго. В случае нехаотических аттракторов качественная картина совершенно другая. Для них близкие траектории так и остаются близкими, небольшие ошибки остаются ограниченными, и поведение предсказуемо.

Ключ к пониманию хаотического поведения даёт простая процедура растягивания и образования складок в фазовом пространстве. Экспоненциальная расходимость — локальное явление: поскольку аттрактор имеет конечные размеры, две орбиты на хаотическом аттракторе не могут экспоненциально расходиться навсегда. Это означает, что такой аттрактор должен образовывать складки внутри самого себя. И хотя орбиты расходятся и следуют совершенно разными путями, в конце концов они должны пройти снова вблизи друг от друга. В результате орбиты на хаотическом аттракторе перемешиваются подобно тому, как перетасовываются карты в колоде. Случайность хаотических орбит есть результат этого процесса перемешивания. Вытягивание и образование складок происходит снова и снова, создавая складки внутри складок, и так до бесконечности. Иначе говоря, хаотический аттрактор является фракталом — объектом, в котором по мере увеличения выявляется всё больше деталей (см. рисунок справа).

Хаос перемешивает орбиты в фазовом пространстве точно так же, как пекарь месит тесто для выпечки хлеба. Представить себе, что происходит с близлежащими траекториями на хаотическом аттракторе, поможет такой эксперимент. Добавим в тесто каплю синей пищевой краски. Вымешивание теста — это комбинация двух действий: его то раскатывают (при этом цветное пятно расширяется), то складывают. Поначалу пятно просто становится длиннее, затем образуются складки, и всё это повторяется снова и снова. При ближайшем рассмотрении оказывается, что тесто состоит из многих слоев попеременно белого и голубого цвета. Уже через 20 шагов исходное пятно вытягивается более чем в 20 млн. раз по сравнению с начальной длиной, а его толщина сокращается до молекулярных размеров. Синяя краска полностью перемешалась с тестом. Хаос действует точно так же, только вместо теста он перемешивает фазовое пространство. Вдохновлённый этой картиной, О. Рёсслер из Тюбингенского университета построил простейший пример хаотического аттрактора в потоке (см. рис. 4).

При наблюдении физической системы из-за неизбежных ошибок измерения нельзя точно задать её состояние. Одному состоянию отвечает не точка, а малая область в фазовом пространстве. Предельные размеры области устанавливает соотношение неопределённостей, но на деле различного рода шумы ухудшают точность измерений и способствуют появлению более заметных ошибок. Эта малая область аналогична синей капле в тесте.

Слайд 8. Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего — от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована — рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.
Если система хаотична, можно ли узнать, насколько она хаотична? Мерой хаоса служит «энтропия» движения, которая, грубо говоря, равна средней скорости растяжения и складывания или средней скорости, с которой «производится» информация2. Другой статистической характеристикой служит «размерность» аттрактора3. Поведение простой системы должно описываться в фазовом пространстве аттрактором малой размерности наподобие приведённых нами примеров. Чтобы задать состояние более сложной системы, может потребоваться несколько чисел, и в таком случае аттрактор может иметь более высокую размерность.

В последние несколько лет для многих систем со случайным поведением удалось найти простой хаотический аттрактор. Среди них — конвективное течение в жидкости, нагреваемой в небольшом сосуде, колебание концентрации веществ при химических реакциях с перемешиванием, сокращение клеток сердца цыплёнка, а также колебательные процессы в большом числе электрических цепей и механических установок. Вдобавок тот же простой тип случайности был установлен для построенных при помощи компьютера моделей многих столь разнообразных явлений, как эпидемии, электрическая активность нервной клетки, пульсации звёзд. Сейчас идут эксперименты с целью найти хаос даже в таких несхожих вещах, как рождение блестящей идеи и экономика.

Следует, однако, подчеркнуть, что теория хаоса ни в коей мере не панацея. Движения систем со многими степенями свободы сложны и имеют случайный характер, и, даже если известно, что некая данная система хаотична, сам по себе этот факт мало что проясняет. Хороший пример — сталкивающиеся друг с другом молекулы в газе. Хотя известно, что такая система хаотична, это нисколько не облегчает предсказание её поведения. В движении участвует так много частиц, что можно надеяться лишь на статистическое описание, а основные статистические свойства выводятся без учёта хаоса.

Существуют другие неисследованные вопросы, для которых роль хаоса неизвестна. Что можно сказать о постоянно меняющихся пространственно протяжённых системах, таких, как дюны в Сахаре или достигшее полного развития турбулентное течение? Неясно, допускают ли сложные пространственно протяжённые системы удобное описание при помощи одного аттрактора в одном фазовом пространстве. Однако опыт обращения с простейшими аттракторами, быть может, подскажет более разветвлённую картину целых семейств пространственно мобильных детерминированных форм наподобие хаотических аттракторов.

Существование хаоса затрагивает сам научный метод. Классический способ проверки теории состоит в том, чтобы сделать предсказание и сверить его с экспериментальными данными. Но для хаотических явлений долгосрочный прогноз в принципе невозможен, и это следует принимать во внимание при оценке достоинств теории. Таким образом, проверка теории становится гораздо более тонкой процедурой, опирающейся больше на статистические и геометрические свойства, чем на подробное предсказание.

Хаос бросает новый вызов сторонникам редукционизма, которые считают, что для изучения системы её нужно разбить на части и изучать каждую часть. Эта точка зрения удерживалась в науке благодаря тому, что есть очень много систем, для которых поведение в целом действительно складывается из поведения частей. Однако хаос показывает нам, что система может иметь сложное поведение вследствие простого нелинейного взаимодействия всего нескольких компонент.

Хаос часто рассматривают в свете налагаемых его существованием ограничений, таких, как отсутствие предсказуемости. Однако природа может пользоваться хаосом конструктивно. Через усиление малых флуктуаций она, возможно, открывает системам природы доступ к новизне. Быть может, жертва, ускользнувшая от хищника, чтобы не быть схваченной, воспользовалась хаотической регулировкой полёта как элементом неожиданности. Биологическая эволюция требует генетической изменчивости, а хаос порождает случайные изменения структуры, открывая тем самым возможность поставить изменчивость под контроль эволюции.

Даже процесс интеллектуального прогресса зависит от появления новых идей и нахождения новых способов увязывать старые идеи. Врождённая творческая способность, быть может, скрывает за собой хаотический процесс, который селективно усиливает малые флуктуации и превращает их в макроскопические связанные состояния ума, которые мы ощущаем как мысли. Иногда это могут быть какие-то решения или то, что осознаётся как проявление воли. С этой точки зрения хаос предоставляет нам механизм для проявления свободной воли в мире, который управляется детерминированными законами.
Отсюда следует фундаментальная значимость хаоса – его изучение может привести к созданию мощного математического аппарата, обладающего большой общностью и обширными возможностями для приложений. Теория хаоса идет своим, особым путем от самых основ. Возможно, это новый, независимый путь к пониманию универсальности мира!

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее популярной области познания на сегодняшний день.


написать администратору сайта