Гроссе Э., Вайсмантель Х. - Химия для любознательных (1985). Химия для любознательных. Основы химии и занимательные опыты
Скачать 1.07 Mb.
|
Можно также рассчитать, сколько времени необходимо для электролитического выделения определенного количества вещества или сколько вещества выделится за определенное время. Во время опыта плотность тока необходимо поддерживать в заданных пределах. Если она будет меньше 0,01 А/см2, то выделится слишком мало металла, так как будут частично образовываться одновалентные ионы меди. При слишком высокой плотности тока сцепление покрытия с электродом будет слабым и при извлечении электрода из раствора оно может осыпаться. На практике гальванические покрытия на металлах применяют прежде всего для защиты от коррозии и для получения зеркального блеска. Кроме того, металлы, особенно медь и свинец, очищают с помощью анодного растворения и последующего выделения на катоде (электролитическое рафинирование). Чтобы покрыть железо медью или никелем необходимо сначала тщательно очистить поверхность предмета. Для этого отполируем ее отмученным мелом и последовательно обезжирим разбавленным раствором едкого натра, водой и спиртом. Если предмет покрыт ржавчиной, надо протравить его заранее в 10-15 %-ном растворе серной кислоты. Очищенное изделие подвесим в электролитической ванне (маленький аквариум или химический стакан), где оно будет служить в качестве катода. Раствор для нанесения медного покрытия содержит в 1 л воды 250 г сульфата меди и 80-100 г концентрированной серной кислоты (Осторожно!). В данном случае анодом будет служить медная пластинка. Поверхность анода примерно должна быть равна поверхности покрываемого предмета. Поэтому надо всегда следить, чтобы медный анод висел в ванне на такой же глубине, как и катод. Процесс будем проводить при напряжении 3-4 В (две аккумуляторные батареи) и плотности тока 0,02- 0,4 А/см2. Температура раствора в ванне должна составлять 18-25 0С. Обратим внимание на то, чтобы плоскость анода и покрываемая поверхность были параллельны друг другу. Предметы сложной формы лучше не использовать. Варьируя длительность электролиза, можно получать медное покрытие разной толщины. Часто прибегают к предварительному меднению для того, чтобы на этот слой нанести прочное покрытие из другого металла. Особенно часто это применяется при хромировании железа, никелировании цинкового литья и в других случаях. Правда, для этой цели используют очень ядовитые цианидные электролиты. Для приготовления электролита для никелирования в 450 мл воды растворим 25 г кристаллического сульфата никеля, 10 г борной кислоты или 10 г цитрата натрия. Цитрат натрия можно приготовить самим, нейтрализовав раствор 10 г лимонной кислоты разбавленным раствором едкого натра или раствором соды. Анодом пусть будет пластина никеля возможно большей площади, а в качестве источника напряжения возьмем аккумулятор. Величину плотности тока с помощью переменного сопротивления будем поддерживать равной 0,005 А/см2. Например, при поверхности предмета 20 см2 надо работать при силе тока 0,1 А. После получаса работы предмет будет уже отникелирован. Вытащим его из ванны и протрем тканью. Впрочем, процесс никелирования лучше не прерывать, так как тогда слой никеля может запассивироваться и последующее никелевое покрытие будет плохо держаться. Чтобы достичь зеркального блеска без механической полировки, введем в гальваническую ванну так называемую блескообразующую добавку. Такими добавками служат, например, клей, желатина, сахар. Можно ввести в никелевую ванну, например, несколько граммов сахара и изучить его действие. Чтобы приготовить электролит для хромирования железа (после предварительного меднения), в 100 мл воды растворим 40 г ангидрида хромовой кислоты СrО3 (Осторожно! Яд!) и точно 0,5 г серной кислоты (ни в коем случае не больше!). Процесс протекает при плотности тока около 0,1 А/см2, а в качестве анода используется свинцовая пластина, площадь которой должна быть несколько меньше площади хромируемой поверхности. Никелевые и хромовые ванны лучше всего слегка подогреть (примерно до 35 0С). Обратим внимание на то, что электролиты для хромирования, особенно при длительном процессе и высокой силе тока, выделяют содержащие хромовую кислоту пары, которые очень вредны для здоровья. Поэтому хромирование следует проводить под тягой или на открытом воздухе, например на балконе. При хромировании (а в меньшей степени и при никелировали) не весь ток используется на осаждение металла. Одновременно выделяется водород. На основании ряда напряжений следовало бы ожидать, что металлы, стоящие перед водородом, вообще не должны выделяться из водных растворов, а напротив должен был бы выделяться менее активный водород. Однако здесь, как и при анодном растворении металлов, катодное выделение водорода часто тормозится и наблюдается только при высоком напряжении. Это явление называют перенапряжением водорода, и оно особенно велико, например, на свинце. Благодаря этому обстоятельству может функционировать свинцовый аккумулятор. При зарядке аккумулятора вместо РbО2 на катоде должен бы возникать водород, но, благодаря перенапряжению, выделение водорода начинается тогда, когда аккумулятор почти полностью заряжен. 4. ХИМИЯ УГЛЕРОДА ЗАГЛЯНЕМ В ПРОШЛОЕ Нашей планете уже около 5 миллиардов лет. Вначале она, вероятно, была раскаленным газовым шаром. Позднее в результате конденсации газов возникли металлы, камень, а потом и вода. К этому времени лишь некоторые газы окружали Землю, образуя ее первоначальную атмосферу. Однако прошло несколько миллиардов лет, а планета все еще был мертва. Только около миллиарда лет назад из неживой материи появились простейшие формы жизни. В те далекие времена в атмосфере не было чистого кислорода, но было много углекислого газа (диоксида углерода). Растения - точно так же, как и теперь - строили из него и из влаги, содержащейся в почве, сложные соединения углерода. При этом в атмосферу выделялся свободный кислород. Так постепенно образовалась современная атмосфера, содержащая много кислорода и очень мало углекислого газа. Соединения углерода, которые накапливались в растениях ранних эпох, большей частью подверглись превращениям под влиянием анаэробных бактерий. Из остатков отмерших растений образовались торф и каменный уголь. Этому процессу способствовало высокое давление минеральных отложений, которые постепенно осаждались на остатках растений. Движение земной коры, связанное с образованием гор, также благоприятствовало появлению угля, поскольку при этом повышались давление и температура. Признаки обильного и повсеместного растительного покрова нашей планеты особенно отчетливо обнаруживаются в каменном угле той эпохи, которая началась приблизительно 400 миллионов лет назад и длилась около 55 миллионов лет. Разумеется, эти растения отличались от современных. Судя по отпечаткам на каменном угле, в лесу тогда преобладали гигантские папоротники и плауны. По остаткам в современных образцах угля можно получить ясное представление о растительном и животном мире того времени. Нефть и природный газ возникали на дне огромных озер и морей, где было необычайно много водорослей и водных животных. Погибая, они погружались на дно и без доступа воздуха, под влиянием бактерий превращались в гниющий гл. При гниении выделялся ядовитый сероводород, губительно действующий на остальные живые организмы. Из органических веществ возникали вначале жирные кислоты, а позднее - нефть и природный газ. Особенно благоприятными условиями для таких процессов отличался пермский период палеозойской эры. Именно с тех пор существуют многие из крупных месторождений нефти. На территории, где в наши дни находится ГДР, не образовывалось больших запасов каменного угля и нефти. Небольшие запасы угля обнаружены в Цвиккау и Фрейтале вблизи Дрездена. Нефть и природный газ удалось найти лишь в последние годы в результате планомерного бурения скважин в Тюрингии, Бранденбурге и Мекленбурге. Управление народных предприятий нефтяной промышленности в Стендале получило задание освоить эти, хотя и не очень богатые, но все же выгодные месторождения. Большая часть нефти для химической промышленности ГДР поступает из Советского Союза по нефтепроводу "Дружба" протяженностью более 2000 км, который подходит к городам Шведту и Лёйне. От 40 до 60 миллионов лет в наших широтах преобладал теплый субтропический климат. Благодаря теплу и высокой влажности в этот период, который называется третичным, возникли обильные заболоченные леса. Из хвойных деревьев чаще всего встречались секвойи, болотный кипарис и разные виды сосны. Смешанный лес третичного периода украшали лиственные породы-пальмы, коричные лавры и камфарные деревья, магнолии, каштаны и дубы. Одновременно появился богатый животный мир, причем большую долю его составляли млекопитающие. Однако болотистая почва лесов третичного периода была благоприятной средой и для жизни насекомых, птиц, крокодилов и змей. Из остатков погибших растений и животных образовался тот самый бурый уголь, который в настоящее время используется во многих отраслях народного хозяйства. Он служит одним из важнейших видов сырья для химической промышленности. Бензин и бытовой газ, растворители, пластмассы и красители, новые лекарства и духи - все продукты органической химии рождаются из этого сырья. За многие миллионы лет природа накопила богатейшие запасы углерода и его соединений. И если сейчас мы все еще вынуждены сжигать значительную часть этого сырья для получения энергии, то это, в сущности, неразумное расточительство. Будем надеяться, что атомная энергия вскоре позволит нам использовать уголь и нефть только как сырье для химической промышленности. БОЛОТНЫЙ ГАЗ И сейчас в болотах гниют растения. Гниющий ил можно найти в стоячей воде пруда или вблизи от берега медленно текущего ручья. Происходящие при этом химические превращения подобны тем процессам, с которых начиналось образование угля и нефти. Проверим это с помощью опыта. Получим болотный газ Принесем из пруда немного ила. Можно взять вместо него и землю со дна болота. Вместе с илом или землей там же наберем воды. Этим илом заполним на одну треть большую стеклянную банку из-под консервов. После этого доверху нальем в банку болотной воды. Сверху укрепим стеклянную воронку, а к ней куском резинового шланга присоединим короткую стеклянную трубку с оттянутым концом. Выход из воронки закроем с помощью зажима на резиновом шланге. Прибор выдержим несколько дней в достаточно теплом месте, например около плиты или печки. Нужно только иметь в виду, что гниение сопровождается неприятным запахом. Постепенно образуются пузырьки газа, заполняющие воронку. После этого можно с осторожностью приоткрыть зажим и тотчас поджечь выделяющийся газ. Горение обусловлено, в основном, тем, что в состав болотного газа входит метан. Метан - первое в ряду соединение углерода. Он содержит только углерод и водород. Формула метана СН4. В его молекуле четыре атома водорода связаны с одним атомом углерода. Однако изображенная здесь формула не дает полного представления о пространственном строении молекулы метана. Исследования показали, что все четыре атома водорода находятся в вершинах правильного тетраэдра, то есть расположены одинаково относительно атома углерода, который находится в центре. Метан получается не только при гниении. Много метана содержится в смеси газов, которая образуется при сухой перегонке угля. Кроме того, он является главной составной частью многих природных газов, а также побочным продуктом переработки нефти. В настоящее время метан служит важнейшим сырьем для получения водорода, оксида углерода СО и других веществ. При неполном сгорании метана получается сажа (углерод в тонкоизмельченном состоянии), которая используется, в частности, как наполнитель в производстве резины. ОСНОВНЫЕ ПОНЯТИЯ ОРГАНИЧЕСКОЙ ХИМИИ Углерод конечно, нельзя отнести к числу наиболее распространенных химических элементов. В земной коре его всего лишь 0,12 %. Но от всех остальных элементов он отличается исключительным разнообразием химических соединений. Число известных в настоящее время соединений углерода более чем вдвое превышает количество соединений всех остальных элементов, вместе взятых. Такое своеобразие углерода объясняется особыми способностями его атомов к образованию химических связей. Как правило углерод четырехвалентен. Его атомы могут присоединяться друг к другу с образованием более или менее длинных цепей а также колец. Остающиеся при этом свободные единицы валентности легко насыщаются водородом. В результате получаются углеводороды. С простейшим из них - метаном - мы уже познакомились. Следующий, более сложный углеводород называется этаном. Его молекула содержит два атома углерода и шесть атомов водорода. Присоединение третьего атома углерода и насыщение свободных валентностей водородом приводит к образованию пропана с формулой C3H8. Следующий углеводород с четырьмя атомами углерода называется бутаном и имеет состав С4Н10. Так же можно составить все более длинные углеродные цепи. Сейчас известны члены ряда с более чем 100 атомами углерода. Углеводороды от метана до бутана при нормальных условиях газообразны. Начиная с пентана у которого пять атомов углерода, они представляют собой жидкости. Соединения, содержащие 17 и больше атомов углерода, при комнатной температуре являются твердыми веществами. Углеводороды метан, этан, пропан, бутан и т. д. образуют ряд соединений, очень близких друг к другу по строению и химическим свойствам. В таблице "Ряд алканов" указаны названия и формулы важнейших членов этого ряда. Очевидно, что каждое последующее вещество отличается по составу от предыдущего наличием дополнительной группы СН2. Новому общая формула углеводородов с п атомами углерода СnН2n+2. Таким образом, число атомов водорода в молекуле на 2 больше, чем удвоенное число атомов углерода. Эти два дополнительных атома водорода находятся по концам углеродной цепи. Такой ряд соединений называется гомологическим рядом. Названия отдельных членов приведенного ряда углеводородов оканчиваются суффиксом "ан", и все вместе они называются алканами. Ряд алканов Число атомов углерода Брутто-формула Название Число атомов углерода Брутто-формула Названия 1 CH4 Метан 7 C7H16 Гептан 2 C2H6 Этан 8 C8H18 Октан 3 C3H8 Пропан 9 C9H20 Нонан 4 C4H10 Бутан 10 C10H22 Декан 5 C5H12 Пентан п CnH2n+2 Алкан 6 C6H14 Гексан Жидкие и твердые алканы содержатся, главным образом, в нефти, а также в смоле, полученной из бурого угля. Алканы преимущественно с шестью - десятью атомами углерода, например октан, входят в состав бензина. Следующие за ними в ряду жидкие алканы - главная составная часть дизельного топлива и смазочных масел. Смесь твердых углеводородов этого ряда получила название парафин. Известны алканы не только с прямой, но и с разветвленной углеродной цепью. Например, для углеводорода С4Н10 возможны два варианта строения: Для следующего за ним углеводорода С5Н12 возможны уже три структуры: ЭТЕН - НЕНАСЫЩЕННЫЙ УГЛЕВОДОРОД В алканах все свободные валентности атомов углерода насыщены атомами водорода. Поэтому их называют еще насыщенными углеводородами, В отличие от них, ненасыщенные углеводороды содержат меньше водорода. Свободные валентности соседних атомов углерода взаимодействуют в них друг с другом и образуют двойные или тройные связи. В структурных формулах такие связи изображаются двумя или тремя черточками между соответствующими атомами углерода. Очевидно, что ненасыщенные углеводороды, если расположить их в порядке увеличения числа атомов углерода, тоже образуют гомологические ряды. Простейшие и в то же время наиболее важные в технике ненасыщенные углеводороды имеют в молекуле одну двойную или тройную связь. В первом случае они называются алкенами, а во втором - алкинами. Первые представители этого ряда - этен (этилен) (Н2С=СН2) и этин (ацетилен) (НС(СН). Этен и этин являются важнейшими промежуточными продуктами в технологии органического синтеза. Оба эти газа в настоящее время производятся во всем мире в огромных количествах путем каталитической переработки углеводородов нефти. Кроме того, большое значение имеет способ получения этина из карбида кальция и воды. Изучение свойств ненасыщенных углеводородов начнем с этена, который легко можно получить из спирта и серной кислоты. Соберем простой прибор. Для этого понадобятся две пробирки. К одной из них подберем пробку с двумя отверстиями и вставим в нее изогнутую стеклянную трубку и термометр со шкалой до 250 ±С. Все соединения должны быть достаточно плотными, чтобы образующийся газ мог выходить только через трубку. В пробирку поместим 2 мл денатурированного спирта и осторожно, малыми порциями, добавим 5 мл концентрированной серной кислоты (только в защитных очках!). При этом смесь очень сильно разогреется, и мы сразу же почувствуем приятный запах - это выделяется этен, пока в малом количестве. Можно добавить в пробирку еще 1-2 г мелкого чистого песка, чтобы ускорить реакцию. Однако можно этого и не делать. Во вторую пробирку нальем 5-10 мл 10%-ного раствора соды (карбоната натрия) и добавим несколько капель раствора перманганата калия. Раствор должен получиться интенсивно фиолетовым, но не слишком темным. Он называется реактивом Байера (В советской химической литературе способ определения строения непредельных соединений путем их окисления разбавленным раствором перманганата калия получил название реакции Вагнера. Эта реакция была открыта Е.Е. Вагнером в 1887 году и описана в "Журнале Русского физико-химического общества" за 1888 г., т. 20, стр. 72 - Прим. перев.) Теперь соберем прибор и будем нагревать первую пробирку горелкой Бунзена до тех пор, пока термометр, погруженный в смесь спирта с серной кислотой, не покажет 150-170 ±С. По стеклянной трубке отводится газообразный этен (теперь мы легко узнаем его по приятному запаху). Пропустим его через реактив Байера. Вскоре раствор обесцветится и одновременно выделятся коричневые хлопья оксида марганца (IV). Если найдется немного бромной воды, можно разбавить ее водой в соотношении 1:1 и через полученную бурую жидкость пропустить этен. (Осторожно! Пары брома действуют на глаза и дыхательные пути). (Об опасности работы с бромом см. стр. 218. Места, обожженные бромом, следует тщательно протереть бензином до отсутствия запаха брома, а затем втереть в кожу глицерин. |