Главная страница

Ян Хакинг - Представление и вмешательство. Ian Hacking Representing and Intervening


Скачать 1.33 Mb.
НазваниеIan Hacking Representing and Intervening
Дата28.02.2022
Размер1.33 Mb.
Формат файлаdoc
Имя файлаЯн Хакинг - Представление и вмешательство.doc
ТипЛитература
#376372
страница20 из 23
1   ...   15   16   17   18   19   20   21   22   23

15. БЭКОНИАНСКИЕ ТЕМЫ

Фрэнсис Бэкон (1560-1626) был первым философом экспериментальной науки. Хотя он и не внес особого вклада в научное знание, большинство его методологических идей живы и поныне, как, например, идея “критического эксперимента”.

Бэкон родился в семье придворного во времена долгого правления Елизаветы I. (“Когда королева спросила его, сколько ему лет, то он, хотя был еще совсем ребенком, учтиво ответил, что ему ‘на два года меньше, чем благодатному правлению Ее Величества’”). Он был главным судебным обвинителем своей эпохи, преследуя в равной степени “преступников и интересы выгоды”. (“Он никогда не унижал преступивших закон и даже не стремился возвышаться над ними, а был мягкосердечен, как будто одним глазом сурово смотрел на типический случай, а другим глазом, полным жалости и сострадания, – на личность). Он брал взятки и был уличен (“Я был самым справедливым судьей в Англии за последние 50 лет, но это был самый справедливый приговор парламента за последние 200 лет”).

Бэкон видел, что наблюдение природы учит нас меньше, чем эксперимент. (“Секреты природы открываются нам гораздо охотнее под напором нашего умения, чем когда мы идем у них на поводу”). Он был до некоторой степени прагматиком. ( “Следовательно, в данном случае истина и польза – одно и то же, а сами исследования имеют большую ценность как залог истины, чем как средство сделать жизнь удобнее”). Он призывает нас экспериментировать, чтобы “растрясти складки природы”. Нужно “подергать льва за хвост”. Бэкон ссылается не больше не меньше как на царя Соломона: “Слава Божия – облекать тайною дело, а слава царей – исследовать дело”*. Он учил, что истинный смысл этих слов в том, что каждый исследователь есть царь.

Муравей и пчела

Бэкон презирал схоластические и книжные попытки выводить знание из начальных принципов. Вместо этого, полагает он, мы должны создавать понятия и находить истины более низкого уровня общности. Наука должна строиться снизу вверх. Бэкон не предугадал ценности теоретизирования, порождения гипотез и математических вычислений, которые с тех пор научились использовать, не ожидая, пока какая-либо система проверок станет доступной. Но когда он выражает презрение по отношению к авторам, которые выходят за пределы фактов, он имеет в виду не новую науку, а схоластику. Тем не менее, к нему плохо относились многие современные философы, признававшие примат теории. Они называли его индуктивистом. И все же именно Бэкон сказал, что “делать заключение исходя из простого перечисления примеров (как делают логики) без испытания его посредством контрпримеров – значит делать неверное заключение”. Бэкон называл индукцию через простое перечисление ребячеством. Будучи философом эксперимента, Бэкон не очень хорошо укладывается в простую дилемму индуктивизма и дедуктивизма. Он стремился исследовать природу во что бы то ни стало. “Не следует разочаровываться или смущаться, если эксперименты, которые вы пытаетесь проделать, не отвечают вашим ожиданиям. Ведь несмотря на то, что успешный эксперимент и был бы более приемлемым, неуспешный часто более поучителен”. Таким образом, Бэкон уже понимал обучающую ценность опровержения. Он видит, что новая наука будет союзом экспериментальной и теоретической деятельности. В духе своего времени он выражает мораль аналогией из жизни насекомых:

“Экспериментаторы подобны муравьям, они только собирают и используют; теоретики подобны паукам, которые ткут свои паутины из себя самих. Пчела выбирает средний путь: она собирает материал с полевых и садовых растений, но преобразует и переваривает его, используя свои собственные силы. Подлинное занятие философией чем-то похоже на этот путь, поскольку оно основывается не только на силе ума, но и на материале естественной истории и механических экспериментов, и не просто целиком закладывает этот материал в память, но лишь изменив и переварив его в своем восприятии”.

“Следовательно, – продолжает он, – основываясь на более близкой и чистой связи между этими двумя способностями, экспериментальной и рациональной (которая никогда еще не была реализована), можно надеяться на многое”.

В чем же величие науки?

Союз между экспериментальными и рациональными способностями во времена пророчеств Бэкона едва зарождался. В наше время Пол Фейерабенд спрашивал, во-первых, “Что такое наука?”, а во-вторых, “В чем величие науки?” Я не нахожу, что второй вопрос действительно важен, но, поскольку мы иногда видим нечто великое в естественной науке, можно ответить на этот вопрос словами Бэкона. Наука – это союз двух способностей, рациональной и экспериментальной. В 12-й главе я подразделил то, что Бэкон называл рациональными способностями, на теоретизирование и вычисление, утверждая, что это разные способности. Величие науки заключается в том, что она есть сотрудничество между различными типами исследователей: теоретиками, вычислителями и экспериментаторами.

Бэкон привык бичевать догматиков и эмпириков. Догматики были людьми чистой теории. Большинство догматиков в те дни имели спекулятивный склад ума, многие эмпирики были по-настоящему талантливыми экспериментаторами. Каждая из групп исследователей поодиночке приобрела мало знания. Что характерно для научного метода? Он соединяет эти две возможности с помощью третьего человеческого дара, того, который я назвал артикуляцией и вычислением. Даже чистые математики приобрели что-то от этого сотрудничества. После успехов в Древней Греции математика оставалась бесплодной до тех пор, пока она вновь не стала “прикладной”. Даже теперь, несмотря на то, что большая часть чистой математики все еще имеет силу, большинство тех, кто внес вклад в глубокие “чистые” идеи – Лагранж, Гильберт или кто-либо еще, были как раз теми исследователями, которые были ближе всего к фундаментальным проблемам физики того времени.

Замечательный факт, касающийся современной физики, заключается в том, что она создает коллективный человеческий артефакт, давая простор трем фундаментальным человеческим интересам: спекуляции, вычислению и эксперименту. Участвуя во взаимодействии этих трех направлений, она обогащает каждый из них, что иначе было бы невозможно.

Таким образом, мы можем оценить те сомнения по отношению к социальным наукам, которые некоторые из нас разделяют. Эти науки по-прежнему находятся в области догматики и эмпирии. Хотя здесь невероятное количество “экспериментирования”, но по сей день оно не выявило ни одного стабильного явления. Здесь существует бесконечное множество спекуляций. Существует даже множество работ по математической психологии или математической экономике, по чистым наукам, которые имеют слабое отношение и к спекуляции, и к экспериментированию. Я далек от того, чтобы как-то оценивать положение дел. Может быть, все эти люди создают новый тип человеческой активности, но многие из нас чувствуют некоторую ностальгию или грусть, когда рассматривают общественные науки. Может быть, это происходит потому, что им не хватает того, чем так хороша относительно молодая физика. Социальные науки не испытывают недостатка в экспериментировании, они не испытывают недостатка в вычислениях, они не испытывают недостатка в теоретизировании, но им не хватает сочетания этих трех компонент. Я подозреваю, что они и не будут сочетаться до тех пор, пока у социальных наук не будет настоящих теоретических объектов, по поводу которых можно теоретизировать, – не просто постулируемых “конструктов” и “концептов”, а объектов, которые можно использовать, которые являются частью намеренного создания новых стабильных явлений.

Преимущественные примеры

Незавершенный “Новый органон” Бэкона (1620 г.) содержит интересную классификацию того, что он называл преимущественными примерами (prerogative instances). Среди них поражающие и достойные внимания наблюдения, разного рода измерения, а также использование микроскопов и телескопов, усиливающих наше зрение. Они включают те способы, с помощью которых мы открываем, по сути, невидимое, используя их взаимодействие с тем, что мы можем наблюдать. Как я заметил в главе 10, Бэкон не говорит о наблюдении, а также не считает важным различать между теми примерами, которые есть просто вú дение, и теми, которые выведены из тонких экспериментов. Конечно, его понимание примеров в целом больше похоже на то, как в современной физике говорят о наблюдении, чем на понятие наблюдения в позитивистской философии.

Критические эксперименты

Четырнадцатый вид примеров Бэкона – это решающие примеры Instantiae crucis, которые позже стали называться критическими экспериментами (crucial experiments).* Более буквальный и, может быть, более точный перевод этого слова был бы “примеры перекрестков” (instances of the crossroads). Старые переводчики используют вместо этого слова “примеры-указатели” (“instances of the fingerposts”), поскольку Бэкон “взял соответствующие слова, напоминающие столбы на развилках, указывающие в нескольких направлениях”.

Дальнейшая философия науки сделала критические эксперименты абсолютно решающими. Ситуация стала представляться так, будто соревнуются две теории, причем единственный тест окончательно решает дело в пользу одной теории за счет другой. Стали утверждать, что даже если победившая теория не окажется истинной, по крайней мере, будет отброшена конкурирующая теория. Но это не то, что Бэкон говорит о примерах-указателях. Бэкон ближе к истине, чем более современные теории науки. Он говорит, что примеры-указатели “проливают довольно много света и имеют большой вес, работа по интерпретации порой на них заканчивается или даже завершается ими”. Я подчеркиваю слово “порой”. Бэкон заявлял, что только иногда критические примеры бывают решающими. В последнее время стало модным говорить, что эксперименты являются критическими только ретроспективно. В свое время они вообще ничего не решают. Так, например, считает Имре Лакатош. Вследствие этого возникла ложная конфронтация. Если бы философы придерживались здравого смысла Бэкона, мы, наверное, избежали бы следующего противоречия: (а) Критические эксперименты решают окончательно и тотчас же приводят к опровержению одной теории, (б) “В науке нет критических экспериментов” (Лакатош II, стр. 211). Конечно, Бэкон по праву не согласился бы с Лакатошем, но он так же бы разошелся и с положением (а).

Примеры Бэкона

Примеры самого Бэкона представляют из себя неупорядоченную смесь. В число “примеров-указателей” он включает и неэкспериментальные примеры. Так Бэкон рассматривает “разделение дорог” по отношению к приливам. Должна ли здесь в качестве модели выступать вода, которая колышется в сосуде, в одно время поднимаясь с одной стороны, а в другое время – с другой? Или это поднятие воды из глубины, как бывает при кипении, когда вода поднимается и опускается? Спросим жителей Панамы, происходит ли на океане отлив и не притекает ли вода в то же самое время к противоположной стороне перешейка. Результат, как считает Бэкон, не является решающей проверкой, поскольку здесь может быть использована вспомогательная гипотеза, поддерживающая одну из теорий, например, та, которая основана на вращении Земли. Затем он рассматривает другие соображения относительно кривизны океанов.

Бэкон замечает, что наиболее критические примеры не предоставляются природой: “в основном, они новые и ищутся определенно и намеренно для того, чтобы обнаружить и применить их благодаря честному и активному усердию”. Его самый лучший пример касается проблемы веса. “Здесь дорога разделяется на две: предметы, имеющие вес, либо увлекаются к центру Земли в силу своей собственной природы, либо они притягиваются массой и телом самой Земли”. Вот его эксперимент: возьмем маятниковые часы, приводимые в действие свинцовыми гирями, и пружинные часы и синхронизируем их на поверхности Земли. Поднимем их на колокольню или другое высокое место, а затем опустим в глубокую шахту. Если при этом часы не будут показывать одно и то же время, значит это вызвано действием веса и силой притяжения Земли. Это замечательная идея, хотя и практически нереализуемая во времена Бэкона. Видимо, он и не получил бы никакого эффекта и тем самым подтвердил бы ложную теорию Аристотеля о собственном движении.* Однако тот факт, что нас послали по неверной дороге, Бэкона не очень бы расстроил. Он никогда не заявлял о том, что критический эксперимент должен окончательно разрешить задачу интерпретации. Вас могут всегда отправить по неверной дороге, и вы будете должны пойти вспять, потому что дорожные указатели были неверными.

Вспомогательные гипотезы

Если бы эксперимент Бэкона был бы аккуратно поставлен в 1620 году, можно предположить, что никому бы не удалось установить разницу во времени на маятниковых и пружинных часах. В то время эти приборы не могли показывать время достаточно точно, а различие между самой глубокой шахтой и самой высокой колокольней, находящейся неподалеку, не было столь велико, чтобы с их помощью установить какое-либо отклонение во времени. Защитник же теории гравитации мог бы отвергнуть результаты опыта, утверждая необходимость более тонких измерений.

Это самый простой способ для того, чтобы спасти гипотезу от отрицательного результата критического эксперимента. Может показаться, что гипотезу можно всегда так спасти. Существует общее положение, утверждаемое французским философом и историком науки Пьером Дюгемом: всякий раз, когда проверяется та или иная гипотеза, можно защитить предпочитаемую вами гипотезу вводя некоторое вспомогательное предположение относительно метода проверки. В 8-й главе мы видели, что Имре Лакатош считал, что это обстоятельство – самый хороший аргумент в пользу того, чтобы отказаться от идеи о простой и прямой фальсификации гипотезы с помощью эксперимента. Как он утверждает, “даже самые восхитительные научные теории не могут просто запретить какое-либо наблюдаемое состояние дел” (I, стр. 16). В подтверждение этого положения мы получаем не факт, а “воображаемый случай неправильного поведения планет”. Это защищает дюгемовский тезис о том, что обычно можно залатать теорию с помощью дополнительных гипотез. Когда одна из гипотез оказывается успешной, это означает триумф теории, поскольку в противном случае приходится искать дальнейшие дополнительные гипотезы. Таким образом, заявляется, что теория не запрещает ничего, поскольку несоответствие наблюдениям мы получаем только путем введения дополнительных гипотез. Это мнение тоже плохо аргументировано и иллюстрирует еще одну разновидность неаккуратности. Из исторического факта о том, что гипотезы иногда спасались, делается вывод о том, что гипотезы можно спасти всегда. Этот тезис аргументируется Лакатошем не столько с помощью некоего воображаемого случая, сколько с помощью порождаемого воображением искажения одного исторического события. Рассмотрим его подробнее.

В 1814 и 1815 годах Уильям Праут выдвинул два замечательных тезиса. В это время, после Дальтона и других, стало возможным точное измерение атомного веса. Праут предположил, что все атомные веса – это целые кратные атомного веса водорода, так что положив H = 1, мы получим, что любое другое вещество будет иметь вес, выражаемый целым числом, например, C = 12, O = 16. Расхождения между измерениями и целыми числами будут ошибками экспериментов. Во-вторых, все атомы состоят из атомов водорода. Таким образом, атомы водорода становятся основными строительными кирпичиками вселенной.

Изначально Праут был медиком, интересовавшимся химией. Он был одним из нескольких исследователей, которые приблизительно в одно и то же время сделали предположение о законе Авогадро. Он обнаружил, что в желудке содержится соляная кислота и что она играет большую роль в пищеварении. Он проделал некоторое полезное исследование по биологическим веществам. У него не было никакого теоретического основания для смелой гипотезы о водороде. Более того, эта гипотеза была на первый взгляд неверной, поскольку установленный атомный вес хлора составлял 35,5. Лакатош использует историю с Праутом в качестве примера того, как гипотезы могут удержаться в море аномалий. Лакатош считал Праута значительной фигурой, ведь он знал, что атомный вес хлора 35,5, но все же полагал, что настоящий его вес 36. Затем он просто “поправил” свое утверждение в сноске. На самом деле, Праут просто подогнал числа так, чтобы все выглядело хорошо. Но Лакатош прав, утверждая, что многие талантливые английские химики придерживались гипотезы Праута, несмотря на неубедительность его чисел. В континентальной Европе, где в то время был возможен более тонкий химический анализ, гораздо меньше людей воспринимали Праута всерьез.

Теперь обратимся к вспомогательным способам спасения гипотез. Лакатош говорит, что никогда не удастся опровергнуть Праута, ведь можно продолжать настаивать на том, что хлор плохо очистили, вследствие чего измерения дают 35,5, несмотря на то, что реальный вес 36. Лакатош приводит воображаемое утверждение: “Если к газу применяются семнадцать очищающих химических процедур p1, p2, ..., p17, то результат будет чистым хлором”. Лакатош полагает, что мы можем тотчас отвергнуть такую схему, потребовав применение процедуры p18. Но в реальной жизни дело обстоит совсем не так. После того как возникла озабоченность тем, что британские (целочисленные) атомные веса не совпадают с континентальными, возникли различные комитеты и Эдварду Тернеру поручили разобраться по существу. Он продолжал регулярно получать 35,5, какое-то время он подвергался критике Праута, утверждавшего, например, что в хлориде серебра может содержаться некоторое количество воды. Был найден метод, исключающий такую возможность. Вскоре британское ученое сообщество осознало, что атомный вес хлора около 35,5. Исследователи из более совершенных парижских лабораторий, все еще заинтригованные возможностью того, что водород представляет собой строительный кирпичик вселенной и потрясенные тем, что старые результаты относительно атомного веса углерода оказались неверными, попытались проделать эксперименты заново. Но после длительных усилий стало ясно, что хлор не может иметь атомный вес 36. Больше не было возможности спасти гипотезу, надеясь на лучшую химическую очистку.

Как потом оказалось, гипотеза была почти правильной, но требовала лишь другой исследовательской программы и идеи физического разделения элементов. В начале двадцатого века Резерфорд и Содди показали, что не существует единого атомного веса химических элементов, есть лишь смесь различных изотопов, так что, например, 35,5 – это среднее нескольких настоящих атомных весов. Более того, почти что верна и вторая гипотеза Праута. Если говорить не о водороде, а об ионах водорода или протонах, то веса всех изотопов являются кратными его веса. Протон оказывается не единственным строительным кирпичиком, но, конечно же, одним из них.

Не стоит думать, что гипотеза Праута “спасена” вспомогательными гипотезами. Процесс устранения аналитической ошибки просто закончился. Атомный вес хлора на Земле около 35,5 и ничто не может изменить этого. Что же касается открытия изотопов, то они не были новой гипотезой, которая спасла “исследовательскую программу” Праута. Просто Праут был удачливым химическим предвестником физической идеи. Это не имеет никакого отношения к тезису Дюгема.

Критические только задним числом

Оппозиция Лакатоша по отношению к критическим экспериментам отвергает не-бэконовскую идею о том, что могут существовать решающие тесты, которые отбирают одну теорию и опровергают другую. Лакатош говорит, что историки признают эксперименты решающими только в ретроспективе. Его методология исследовательских программ учит в точности этому. Если Т – это работающая теория в программе П*, то мы можем поставить эксперимент для того, чтобы путем проверки сравнить Т и Т*. Если Т побеждает в этом туре, то для П* еще возможно оправиться и предложить более совершенную теорию, которая, в свою очередь, победит Т. И только после того как П* потерпит окончательное поражение, позже будет утверждаться, что испытание Т* было критическим.

По более скромной терминологии Бэкона, эксперимент-перекресток можно распознать сразу же. Если испытание было в пользу Т, то дорожные указатели говорят, что истина может лежать в направлении П. Можно лакатошизировать Бэкона, хотя это не очень пойдет на пользу обоим. Представим себе сеть дорог – обычную дорожную карту. У одного пересечения указатель может говорить, что истина лежит в одном направлении, направлении Т и П. Так что мы не идем по дороге П*. Эта дорога может позже пересекаться с дорогой П. П* выдвигает пересмотренную теорию Т1*. Примеры-указатели, проверяющие Т и Т*, могут теперь направить нас на то, чтобы следовать по дороге П*. Только если на дороге П мы никогда больше не пересечем П*, то задним числом можно будет сказать, что первый перекресток был решающим.

Это, однако, означает слишком сильно снижать роль эксперимента. Определенные типы экспериментальных находок служат опорными точками, постоянными фактами о явлениях, к которым будущая теория должна приспособиться и которые в соединении с сопоставимыми теоретическими опорными точками очень часто толкают в одном направлении.

В качестве иллюстрации можно указать на противоречивый эксперимент Майкельсона-Морли. Одно время на него ссылались как на решающий довод для отвержения ньютоновской мысли о том, что все пространство наполнено всепроникающим эфиром. Эйнштейн заменил эту идею теорией относительности. Но сам он мало знал об эксперименте Майкельсона-Морли, так что история этого эксперимента, конечно же, не имеет отношения к “проверке теорий Ньютона и Эйнштейна”. Лакатош использовал этот факт как центральный пункт для яростных нападок на критические эксперименты. Он также использует его, доказывая, что всякий эксперимент подчинен теории.

На самом деле этот эксперимент – хороший пример бэконовского исследования природы. Он так много раз обсуждался, что так и останется противоречивым, но важно привести и эксперименталистскую точку зрения, наряду с точкой зрения Лакатоша. С этой целью вспомним про уже давно забытый эфир.

Всепроникающий эфир

Ньютон писал: “Все пространство пронизано упругой средой, или эфиром, который способен распространять звуковые вибрации только с очень высокой скоростью”. Затем он говорит, что свет – это не волны в эфире, скорее эфир – среда, через которую движутся световые лучи. Ньютоновская оптика практически не использовала представление об эфире, а сторонники Лейбница высмеивали его, называя “оккультной субстанцией”, подобно тому как силу тяжести они называли “оккультной силой”.
1   ...   15   16   17   18   19   20   21   22   23


написать администратору сайта