Главная страница
Навигация по странице:

  • человека

  • химии

  • медицине

  • биохимия

  • Липиды. II. Определение класса липидов, их классификация и биологическое значение каждого класса


    Скачать 35.89 Kb.
    НазваниеII. Определение класса липидов, их классификация и биологическое значение каждого класса
    Дата18.05.2022
    Размер35.89 Kb.
    Формат файлаdocx
    Имя файлаЛипиды.docx
    ТипРеферат
    #536150


    Содержание.

    I. Введение……………………………………………………………….3
    II. Определение класса липидов, их классификация и биологическое
    значение каждого класса…………………………………………...3
    III. Принципы нормирования и возрастные нормы липидов в
    питании……………………………………………………….……..5
    IV. Этапы обмена липидов в организме…………………………………6
    V. Липипротеиды………………………………………………………...7
    1. Строение и химический состав………………………………7
    2. Классификация ЛП……………………………………………9
    3. Роль липопротеинов…………………………………………12
    4. Наследственная недостаточность липопротеидов…………12
    VI. Переваривание и всасывание липидов…………………………….12
    1. Желчь…………………………………………………………12
    • Значение……………………………………………..12
    • Последствия нарушения секреции………………...14
    • Химический состав…………………………………15
    • Гуморальная регуляция секреции…………………16
    2.ПАВ желудочно-кишечного тракта и механизм
    эмульгирования, значение………………………………..18
    3. Расщепление липидов……………………………………….19
    • ТГ…………………………………………………….19
    • ФЛ……………………………………………………22
    • ХС…………………………………………………….23
    4. Химический состав и строение мицелл, механизмы
    всасывания липидов……………………………………..23
    5. Механизм ресинтеза липидов в энтероцитах, значение…..26
    6. Образование и обмен ХМ, значение ……………………….30
    VII. Нарушения переваривания и всасывания липидов……………….34
    1. Стеаторея……………………………………………………..34
    2. Хиломикронемия…………………………………………….35
    VIII. Заключение………………………………………………………….36
    IX. Приложение…………………………………………………………37
    X. Список литературы…………………………………………………40


    Введение.

    Уже при кратком знакомстве с молекулярными основами жизни мы сталкиваемся с липидами. Назовем их основные биологические свойства:
    • Главные компоненты биологических мембран;
    • Запасной, изолирующий и защищающий органы материал;
    • Наиболее калорийная часть пищи;
    • Важная составная часть диеты человека и животных;
    • Переносчики ряда витаминов;
    • Регуляторы транспорта витаминов и солей;
    • Иммуномодуляторы;
    • Регуляторы активности некоторых ферментов;
    • Эндогормоны;
    • Передатчики биологических сигналов.
    Этот список увеличивается по мере изучения липидов. В обеспечении названных и других функций участвуют липиды различной структуры в разных количествах: тонны триглицеридов служат китам как запас энергии и защита тела от внешних воздействий, а как эндогормоны или передатчики биологических сигналов действуют липиды других классов в микро- и нанограммовых дозах. Поэтому для понимания сути многих биологических процессов нужно иметь представления о переваривании и всасывании липидов, об их транспорте и синтезе в организме.

    Определение класса липидов, их классификация и
    биологическое значение .
    В учебнике по общей химии под редакцией Ю. И. Полянского сказано: “Липиды представляют собой органические вещества, нерастворимые в воде, но растворимые в бензоле, эфире, ацетоне.” Сходные определения липидов чаще всего встречаются и в одном из лучших руководств по биохимии. Они имеют два существенных недостатка: во – первых, вместо четкой химической характеристики класса говорят о физических свойствах липидов, во – вторых, содержат фактические ошибки. Так, далеко не все липиды растворимы в перечисляемых органических растворителях. Н. Грин с соавторами, с одной стороны критикуют подобные определения, но с другой – не доводят дело до конца: “ Можно все же сказать, что настоящие липиды – это сложные эфиры жирных кислот и какого – либо спирта”. Как мы увидим, помимо сложных эфиров спиртов есть много других липидов. Неправильные определения влекут за собой запутанные, неверные классификации . В число липидов часто включают стерины, жирорастворимые витамины и другие соединения. Мы будем относить к липидам вещества с четко выраженной химической структурой, тесно связанные биохимически: липиды – это жирные кислоты и их производные.
    Что такое жирные кислоты? Из органической химии известно, что это алифатические монокарбоновые кислоты R – СООН. Как и для других классов природных соединений, определение наполнится глубоким содержанием после знакомства с главными представителями липидов [1, 1997].
    Липиды разделяются на две группы по принципу гидролитического расщепления. Первая – липиды, не подвергающиеся гидролизу. К ним можно отнести некоторые углеводороды , например, сквален и картиноиды, высшие спирты, включая стерины, и высшие аминоспирты, высшие альдегиды, кетоны и хиноны ( витамины группы К, убихинон и т.д. ) , жирные кислоты (ЖК) и простогландины (ПГ). Во вторую группу включены липиды, гидролиз которых приводит к “освобождению” двух и более индивидуальных соединений. В эту группу входят в основном вещества, содержащие сложноэфирную и / или амидную связи, а также связь типа простого эфира, ацеталя или полуацеталя. Это – воски, эфиры стеринов, в том числе холестерина (ХС) и многоатомных спиртов (например, глицериды, фосфолипиды (ФЛ), включая сфиегомиелины ), гликолипиды, серусодержащие липиды и липиды, имеющие в своем составе аминокислоты.
    Если оставить в стороне ряд соединений, которые по отдельным признакам подходят к определению “липиды” или являются их предшественниками (например , жирные кислоты, сквален и др.) или производными (например, ПГ), то можно использовать следующую классификацию липидов, основанную на их структурных особенностях:
    глицериды;
    воски;
    ФЛ: глицерофосфолипиды , сфингомиелины;
    гликолипиды (гликосфинголипиды) : цереброзиды и ганглиозиды ;
    другие сложные липиды ( сульфолипиды и аминолипиды);
    стерины и их эфиры с ЖК.
    Биологическое значение.
    Воска: У позвоночных воски, секретируемые кожными железами, выполняют функцию защитного покрытия, смазающего и смягчающего кожу и предохраняющего ее от воды. Восковым секретом покрыты даже волосы. Перья птиц , особенно водоплавающих, и шкура животных имеют восковое покрытие, которое придает водоотталкивающие свойства. Воск овечьей шерсти, называемый линолином, в качестве спиртовой компоненты содержит ланостерин – один из конечных продуктов биосинтеза холестерина. Ланолин широко используется в медицине и косметике как основа для приготовления различных мазей и кремов.
    Цереброзиды обнаруживаются главным образом в миелиновых оболочках и в мембранах нервных клеток мозга.
    Ганглиозиды: Они найдены в сером веществе головного мозга. Локализованы в плазматических мембранах нервных клеток, где на их долю приходится около 6 % мембранных липидов. В меньшем количестве они обнаружены в мембранах клеток других тканей. Показано участие ганглиозидов в формировании защитного слоя клеток – гликокаликса и в осуществлении ими рецепторной функции.
    ФЛ обнаружены в составе тканей и клеток всех живых существ, как в свободном виде, так и в виде белково – липидных комплексов (липопротеидов и протеолипидов) . Особенно много ФЛ содержится в оболочках и мембранах клеток и клеточных органелл (ядра, митохондрий и микросомах), где они образуют структурную основу мембраны – фосфолипидный бислой. Наиболее богаты ФЛ ткани мозга и нервов (до 30 % в пересчете на сухую массу ткани), печень(до 16 %), почки(до11%), сердце(до 10 %), скелетные мышцы (около 3 %). В плазме крови человека содержится 2,8 – 4,4 ммоль / л ФЛ.
    Всюду, где содержатся ФЛ им сопутствует холестерин. Поэтому эти липиды иногда называют комплементарными.
    Стерины и их эфиры с жирными кислотами: Наиболее важным представителем этого класса соединений является ХС. Каждая клетка в организме млекопитающих содержит ХС входя в состав мембранных клеток , НЭХС вместе с ФЛ и белками обеспечивает избирательную проницаемость клеточной мембраны и оказывает регулирующее влияние на состояние мембраны и на активность связанных с ней энзимов.
    ХС является источником образования в организме млекопитающих желчных кислот, а также стероидных гормонов: тестостерона, эстрадиола, прогестерона, кортизоном, альдестерона. ХС, а точнее продукты его окисления 7-дегидрохолестерин, в результате воздействия УФ-лучей на кожу превращается в ней в витамин D3. Таким образом физиологическая функция ХС многообразна [5,1999].
    Глицериды. ТГ составляют основную массу резервных липидов человеческого организма. Они выполняют резервную функцию, причем это преимущественно энергетический резерв организма. У человека массой 70 кг на долю резервных липидов приходится примерно 11 кг. Учитывая калорический коэффициент для липидов, равный 9,3 ккал/г, общий запас энергии в резервных ТГ составляет величину порядка 100000 ккал. Функция резервных ТГ как запаса пластического материала не столь очевидна, но все же продукты расщепления ТГ могут использоваться для биосинтезов, например, входящий в их состав глицерол может быть использаван для синтеза глюкозы или некоторых аминокислот.
    Являясь одним из основных компонентов жировой ткани, ТГ участвуют в защите внутренних органов человека от механических повреждений. Кроме того , входя в большом количестве в состав подкожной жировой клетчатки, они участвуют втерморегуляции, образуя теплоизолирующую прослойку [6, 1999].

    Принципы нормирования и возрастные нормы в питании.
    Липиды – основные пищевые вещества, покрывающие 35% энергозатрат в организме человека [10, 2001]. Пищевой рацион должен содержать липиды из расчета 1,5 г на 1 кг массы тела, что составляет для 70-килограммового человека около 100 г липидов в сутки [6, 1999].
    При нормировании количества пищи необходимо учитывать:
    вес (масса) тела;
    возраст;
    образ жизни;
    состояние организма [10, 2001].
    Важно, чтобы соблюдалось оптимальное соотношение животных и растительных жиров. Оно должно составлять 70:30 .Потребность организм в растительных маслах, где в основном содержатся незаменимые жирные кислоты, равняется 25 – 30 граммам в сутки [9, 1994].
    Педиатрическая диетология , или диетология развития, в течение уже нескольких десятков лет используют в качестве надежного ориентира в основании уровней потребления и рекомендации , факты, относящиеся к химическому составу и использованию грудным ребенком нутриентов “золотого стандарта” пищевого обеспечения.
    Физиологические потребности в нутриентах расчитывают, исходя из результатов анализа реальных величин потребления в представительных выборках детей грудного возраста, а также на основе использования различных клинических, общепедиатрических и биохимических критериев степени обеспеченности при разных уровнях потребления. Во многих странах существуют государственные рекомендации по нормированию потреблений. Термин “ рекомендуемая норма потребления ’’ содержит в себе и некоторую гарантирующую избыточность или “ резерв надежности” рекомендации ориентированный на гетерогенность популяции. Естественно, что рекомендуемые нормы изменяются по мере накопления объективных подтверждений их необходимости. Решающее значение при этом имеют клинические и эпидемиологические данные об особенностях развития и здоровья детей при том или ином уровне поступления нутриента. Ниже приведены примеры нормирования питания на уровне ВОЗ [7,1999].

    0–2мес 3–5мес 6–11мес. 1–3г. 3–7л. 7–10л. 11 – 13л. 14-17л.
    Жиры, всего, г 53 68 79 93(м)85(д) 100 90
    В том числе
    Растительные, г 5 - 10 11 16 19(м)17(д) 20 18
    Жиры, гкг 6,5 6,0 5,5

    Этапы обмена липидов в организме.
    Липиды, поступающие с пищей, крайне гетерогенны по своему происхождению. В желудочно кишечном тракте они в значительной мере расщепляются до составляющих мономеров: высших жирных кислот, глицерола, аминоспиртов и др. Эти продукты расщепления всасываются в кишечную стенку и из них в клетках кишечного эпителия синтезируются липиды, свойственные человеку. Эти видоспецифические липиды далее поступают в лимфатическую и кровеносную системы и разносятся к различным тканям и органам [6, 1999].

    Липопротеиды.
    Строение и химический состав.
    Исходя из современных представлений, само понятие “липопротеиды” можно определить следующим образом: липопротеиды (ЛП) – высоко молекулярные водорастворимые частицы, представляющие собой комплекс белка и липида, образованный нековалентными связями, в котором белки совместно с полярными липидами формируют поверхностный гидрофильный слой, окружающий и защищающий внутреннюю гидрофобную липидную сферу от водной сферы и обеспечивающий транспорт липидов в кровяном русле и доставку их в органы и ткани. Согласно этому определению, одним из признаков ЛП является наличие в них наружного гидрофильного белково – липидного слоя и липидной гидрофобной сферы (ядра).
    Плазменные ЛП-частицы имеют сферическую форму. Внутри находится жировая капля, содержащяя неполярные липиды (триглицериды и эстерефицированный холестерин) и формирующая ядро ЛП-частицы. Оно окружено оболочкой из ФЛ, НЭХС и белка. Целесообразность такой структуры объясняется тем, что неполярные липиды нерастворимы в водной среде и поэтому не могут транспортироваться в ток крови. Полярные же липиды (ФЛ, НЭХС) совместно с белком формируют поверхностный гидрофильный слой, который с одной стороны, защищает внутреннюю гидрофобную липидную сферу от водной среды, а с другой – обеспечивает растворимость и транспорт ЛП-частицы в этой же водной среде. ФЛ и НЭХС покрывают только 30 – 70 % поверхности частицы, остальную ее часть восполняет белок.
    Основную массу ЛП-частицы составляет ее ядро, в котором помимо ТГ и ЭХС, обнаруживаются небольшие количества НЭХС. Именно ядро частицы определяет ее размеры и сферическую форму. В зависимости от класса ЛП изменяется соотношение между основными липидами: с увеличением плотности частиц уменьшается доля ТГ и возрастает доля ЭХС. Поскольку ТГ являются растворителями для последних, то в богатых ТГ липид – белковых комплексах (ХМ и ЛПОНП) эфиры ХС равномерно распределены по ядру, тогда как в ЛПНП и ЛПВП они образуют отдельные скопления. Образно , к ядру ЛП-частицы можно употребить выражение “липиды внутри липида ”. Наружная оболочка ЛП-частицы, в отличии от ядра, обладает относительно высокой электронной плотностью. Толщина этой оболочки составляет 2,1 – 2,2 нм, что соответствует половине толщины липидного бислоя клеточных мембран. Отсюда было сделано заключение , что в плазменных ЛП наружная оболочка, в отличии от клеточных мембран, содержит липидный монослой. ФЛ, а также НЭХС расположены в наружной оболочке таким образом, что их полярные группы ориентированны наружу, а гидрофобные жирно – кислотные “хвосты” – внутрь частицы, причем какая-то часть этих “хвостов” даже погружена в липидное ядро.
    По всей вероятности , наружная оболочка ЛП представляет собой не гомогенный слой, а мозаичную поверхность с выступающими участками белка и , возможно, НЭХС. Именно такая структура делает ЛП-частицу менее обособленной по сравнению с клеткой, окруженной бислойной мембраной, и объясняет легкую подвижность НЭХС (в меньшей степени белка и ФЛ) и способность этих компонентов переходить из одного класса ЛП на другой, даже сердцевинно-расположенные ЭХС и ТГ могут переходить из ЛП-частиц одной плотности на ЛП-частицы другой.
    Существует много различных схем строения ЛП-частицы. Предполагается , что входящие в ее состав белки занимают только часть наружной оболочки. На основании данных , полученных при изучении переноса энергии с остатков белка одного из классов ЛП (ЛПНП) на гидрофобный слой пирен , было сделано заключение, что глубина погружения триптофанилов в фосфолипидный монослой составляет всего лишь 1,16 0,26 нм. Вместе с тем, допускается, что значительная часть каждой белковой молекулы погружены в ЛП-частицу глубже, чем толщина ее наружной оболочки. В целом положение белков в ЛП-частице напоминает картину белкового “айсберга”, плавающего в “липидном море”, предложенную ранее для объяснения структуры клеточных мембран.(рис. 1)

    Схема строения ЛП-частицы имеет сходство со структурой плазматической мембраны. Некоторое количество ЭХС и ТГ (не показано) содержится в поверхностном слое, а в ядре частицы имеется небольшое количество НЭХС.
    Такая структура может обеспечивать непосредственный контакт белковых молекул с липидами. Отдельные белки (апопротеины), входящие в состав ЛП , выполнят коэнзимную функцию в таких реакциях , как эстерификация ХС и гидролиз ТГ, протекающих непосредственно на ЛП-частице. Это требует прямого контакта липидов с апопротеинами и соответствующими энзимами [5, 1999]. Апопротеины обеспечивают растворимость ЛП и (благодаря их сигнальной роли) определяют пути метаболизма и судьбу каждого класса ЛП-частиц [3, 2000].
    Липиды оболочки ЛП-частицы обладают более высокой микровязкостью, чем липиды ядра. Микровязкость липидов увеличивается , если в оболочке увеличивается содержание НЭХС, а в сердцевине – содержание ЭХС и ТГ с насыщенными ЖК. Увеличение микровязкости липидов может наблюдаться при скармливании животным ХС, а ее снижение – при содержании на диете , богатой полиненасыщенными ЖК. Микровязкость липидов , особенно оболочки ЛП-частицы , играет определенную роль в ее взаимодействии с мембраной клеток. В целом интегральность структуры ЛП-частицы обеспечивается гидрофобными , и в большей степени, ионными связями; при этом имеют место следующие взаимодействия: липид – липид, липид – белок, белок – белок.
    В связи с тем, что плазменные ЛП представляют собой сложные надмолекулярные комплексы, в которых связи между компонентами комплекса носят нековалентный характер, применительна к ним вместо слова “молекула” употребляют выражение “частица”.

    Классификация ЛП.
    Существует несколько классификаций ЛП, основанных на различиях в их свойствах: гидратированной плотности, скорости флотации, электрофлоретической подвижности, а так же на различиях в апопротеиновом составе. Наибольшее распространение получила классификация, основанная на поведении отдельных ЛП в гравитационном поле в процессе ультрацентрифугирования. Гидратированная плотность ЛП колеблется в пределах 0,93 – 1,16 гр мл, что ниже гидратированной плотности плазменных белков, не связанных с липидами. Поэтому при ультрацентрифугировании в растворах с солевой плотностью, равной 1,21 или 1,25 г мл, ЛП всплывают, а белки, неассоциированные с липидами, остаются в инфрантанте.
    При аналитическом ультрацентрифугировании разделения ЛП на фракции основано на скорости их флотации при плотности раствора 1,063 гмл для ХМ (Sf >400), ЛПОНП (Sf 20 – 400),и ЛПНП (Sf 0 – 20) и при плотности равной 1,20 г/мл для ЛПВП.
    Различная электрофоретическая подвижность по отношению к глобулинам плазмы положена в основу другой классификации ЛП согласно которой различают ХМ (остаются на старте подобно -глобулинам), -ЛП (ЛПНП), пре--ЛП (ЛПОНП) и -ЛП (ЛПВП), занимающие положение -, 1-, 2-глобулинов соответственно.
    Приведенные выше классификации не учитывают то обстоятельство, что каждый из классов ЛП отличается большой дисперсностью и гетерогенностью. Последнего недостатка в значительной степени лишена так называемая химическая классификация ЛП, основанная на оценке состава апопротеинов как специфических маркеров для рассматриваемых липид – белковых комплексов.
    Данный подход и классификация ЛП предусматривает деление всех ЛП на первичные и вторичные (ассоциированные комплексы). К первичным относятся такие ЛП, которые содержат один индивидуальный белок – апопротеин (например, ЛП В-100, ЛП С-I, ЛП С-II и т.д.). Ко вторым ЛП относят ассоциаты первичных ЛП (например,ЛП А-I : А-II, ЛП А-II:В:С:D:Е).
    Характерно, что доля ассоциированных комплексов чрезвычайно высока у ХМ и ЛПОНП и очень низка у ЛПВП, т.е. способность к образованию комплексов уменьшается с увеличением плотность ЛП.
    Следует остановиться еще на одном подходе в разделении ЛП, учитывающем преобладание в них того или иного белка или липида. Согласно этому подходу, выделяют апо А- и апо В-содержащие ЛП, а также ЛП, богатые ТГ, ХС, ФЛ.
    К ЛП, богатым ТГ относятся ХМ и ЛПОНП, ЛП , богатые ХС – это ЛПНП и ЛП ,богатые ФЛ – ЛПВП.
    Состав и физико-химические свойства ЛП плазмы крови человека, богатых ТГ или ХС.Климов, 1999

    Показатели ХМ ЛПОНП ЛПНП1 ЛПНП2
    Средняя гидратированная
    плотность частиц, г мл 0,93 0,97 1,012 1,035
    Границы солевой плотности
    для выделения , г мл 1,006 1,006 1,006 –
    1,019 1,019 –
    1,063
    Диаметр частицы , нм >100 25 - 75 22 - 24 19 – 23
    ММ 10-6, Да 500 5 - 13 3,9 – 4,8 2,7 – 4,0
    Скорость флотации, Sf 400 20 - 400 12 - 20 0 - 12
    Средний поверхностный
    потенциал, мВ 0 -7 -7 -7
    Подвижность в электрическом
    поле остаются
    на старте пре -
    Химический состав ЛП, %
    ТГ
    Белки
    ХС общий
    % ЭХС
    ФЛ
    80 – 95
    1 – 2
    0,5 – 3
    46
    3 - 9
    50 – 70
    5 – 12
    15 – 17
    57
    13 - 20
    24 – 34
    14 – 18
    35 – 45
    66
    11 - 17
    5 – 10
    20 – 25
    45 – 48
    70
    20 - 30
    Основные апопротеины В-48,С,Е,А В-100,С,Е В-100,С В-100
    Содержание в плазме крови
    взрослых лиц натощак, мгдл след 50 - 200 10 - 50 200 – 300
    Что переносят ТГ пищи Эндоген-
    ные ТГ ЭХС,
    ТГ ХС, ЭХС

    Состав и физико-химические свойства ЛП плазмы крови человека, богатых ФЛ [Климов, 1999].

    Показатели Общая фрак-
    ция ЛПВП ЛПВП2 ЛПВП3 ЛПОВП
    Средняя гидратированная
    плотность частиц, г мл 1,130 1,090 1,150 1,230
    Границы солевой плотности
    для выделения, г мл 1,063 – 1,25 1,08-1,125 1,125-1,21 1,21-1,25
    Диаметр частицы, нм 6 - 12 7 - 12 6 - 7 7
    ММ 10-5, Да 1,5 – 4,0 3,60 – 3,86 1,48 – 1,86 1,5
    Скорость флотации (Sf) 0 - 9 3,5 – 9,0 0 – 3,5
    Химический состав ЛП, %
    Белки
    ХС общий
    % ЭХС
    ФЛ
    ТГ
    45– 55
    20– 27
    78
    2 – 40
    3 - 5
    33 – 41
    18 – 28
    74
    30 – 42
    4 - 8
    45 – 59
    12 – 25
    81
    23 – 30
    2 - 6
    62
    3
    90
    28
    5
    Основные апопротеины А-I, А-II А-I, А-II А-I, А-II
    Содержание в плазме крови
    взрослых лиц натощак, мгдл мужчины женщины
    170 –350
    220 - 470
    50 – 120
    70 - 200
    120 –230
    150 -270
    20
    20

    Что переносят ХС,ЭХС
    ФЛ ЭХС,
    ФЛ
    Рис.2.

    Роль ЛП.
    ЛП плазмы крови являются уникальной транспортной формой липидов в организме человека и животных. Они осуществляют транспорт липидов как экзогеного (пищевого) происхождения, так и заново синтезируемых в печени и стенке тонкой кишки (т.е. эндогенного происхождения) в систему циркуляции и далее к местам утилизации или депонирования . Уже одного этого было достаточно, чтобы представить важную роль ЛП в жизнедеятельности организма. Вместе с тем нам известно теперь, что отдельные ЛП осуществляют “захват” избыточного ХС из клеток переферических тканей и его “обратный” транспорт в печень для окисления в желчные кислоты и выведение с желчью . Наконец, ЛП осуществляют транспорт жирорастворимых витамиов, гормонов и других биологически активных веществ. Среди них следует отметить соединения, в отношении липидов антиоксидантной активностью: - ,- токоферолы, - и - каротины, убихинон и т.д. Основными липидами , транспортируемыми в токе крови в составе липопротеидных комплексов, являются ТГ, НЭХС, ЭХС, ФЛ и небольшое количество НЭЖК. Основная масса НЭЖК транспортируется альбуминами крови [5,1999].

    Наследственная недостаточность ЛП.
    Существуют 3 редких вида наследственной недостаточности ЛП.
    Абеталипопротеинемия. При абетолипопротеинемии имеется дефект синтеза апо-В, в плазме отсутствуют ХМ, ЛПОНП, ЛПНП. Клинически оно проявляется мальабсорбцией жиров, акантоцитозом, пигментным ретинитом и атаксической невропатией.
    Гипобеталипопротеинемия. При этом состоянии наблюдается частичная недостаточность апо-В; ХМ, ЛПОНП и ЛПНП присутствуют, но в низких концентрациях.
    Болезнь Танжье. При этой патологии снижена концентрация ЛПВП. Клинически это состояние характеризуется гиперпластическим, оранжевыми миндалинами и аккумуляцией эфиров ХС в других ретикулоэндотелиальных тканях. Патология связана с ускоренным катаболизмом апо А-I [8, 2000].

    Переваривание и всасывание липидов.

    Желчь.
    Значение.
    На заре формирования современного учения о внешнесекреторной функции печени, когда естествоиспытатели располагали лишь первыми научными факторами о количестве и качестве отделяемой на пищу желчи и о тех сдвигах, которые возникают в секреции желчи в связи с воздействиями на организм различных внешних и внутренних факторов, И. П. Павлов так оценил значение желчи: “. . . главная роль желчи – сменять желудочное пищеварение на кишечное, уничтожая действие пепсина как опасного для ферментов поджелудочного сока агента и черезвычайно благоприятствуя ферментам поджелудочного сока, в особенности жировому “.
    С тех пор прошло много десятков лет и за истекшее время физиология, биохимия и клиника, широко используя новейшие физиологические, биохимические, физические и клинические приемы исследования, обогатились огромным количеством фактов, которые расширили наши знания относительно роли и значения желчи в организме.
    Теперь мы следующим образом можем оценить значение желчи: она 1) сменяет желудочное пищеварение на кишечное путем ограничения действия пепсина и создания наиболее благоприятных условий для активности ферментов поджелудочного сока, особенно липазы ; 2) благодаря наличию желчных кислот эмульгирует жиры и , снижая поверхностное натяжение капелек жира, способствует увеличению его контакта с липолитическими ферментами; кроме того, обеспечивает лучшее всасывание в кишечнике нерастворимых в воде высших жирных кислот, холестерина, витаминов Д, Е, К и каротина, а также аминокислот; 3) стимулирует моторную деятельность кишечника, в том числе и деятельность кишечных ворсинок, в результате чего повышается скорость абсорбции веществ в кишечнике; 4) является одним из стимуляторов секреции поджелудочной железы, желудочной слизи, а самое главное – желчеобразовательной функции печени; 5) благодаря содержанию протеолитического, амилолитического и гликолитического ферментов участвует в процессах кишечного пищеварения; 6) оказывает бактериостатическое действие на кишечную флору, предупреждая развитие гнилостных процессов. Помимо перечисленных функций, желчь играет весьма активную роль в межуточном обмене веществ, например углеводном, жировом, витаминном, пигментном, порфириновом , особенно белка и содержащегося в нем фосфора, а также в регуляции водного и электролитного обмена, не говоря уже об ее обезвреживающей функции, функции кроветворения и функции свертывания крови. При голодании выделяющаяся желчь содержит до 600 – 800 мг белка, который, попадая в кишечник, подвергается переработке, после чего продукты его, главным образом аминокислоты, всасываются, поступают в кровь и используются клетками как пластический и энергетический материал. Тоже самое можно сказать и в отношении фосфора. Его количество доходит в печеночной желчи до 100мг % и в пузырной желчи до 200 мг % , а значительная часть фосфорных соединений, выделяемая с желчью в кишечник, вновь всасывается и по воротной системе поступает обратно в печень, осуществляя таким образом, гепато – энтеро – гепатический кругооборот. С желчью выделяются азотистые вещества, которые вновь всасываются и утилизируются организмом.
    Кроме того , значение желчи определяется еще и экскреторной функцией, выведением из крови таких продуктов обмена, как серотонин, а также многих экзогенных веществ ( лекарственные вещества, соединения брома, йода, мышьяка, фенолфталеина и салициловой кислоты, соли тяжелых металлов и некоторые другие химические компоненты ).
    Еще одним свойством обладает желчь: она раздражает чувствительные нервные окончания сосудов и мозговые центры и изменяет возбудимость нервно – мышечной системы.


    написать администратору сайта