Лекции. Информатика_Лекции. Информатика и информатизация
Скачать 387 Kb.
|
ИНФОРМАТИКА И ИНФОРМАТИЗАЦИЯ Информатика как наука Характерной чертой XX, а теперь уже и XXI, веков является овладение человечеством компьютерной техникой, которая настолько плотно вошла и производственную сферу и в повседневную жизнь, что теперь трудно найти задачу, решение которой в какой-либо степени бы не предполагало использование вычислительной техники. В связи с этим еще в 60-х годах прошлого века во Франции введен термин "информатики" как результат слияния слов информация и автоматика. Иначе говоря,информатика призвана заниматься автоматизированной обработкой информации. Поэтому информатику обычно рассматривают как техническую науку о методах получения, хранения, накопления, воспроизведения, обработки и передачи информации средствами вычислительной техники. В настоящее время Большой энциклопедический словарь дает следующее определение информатики: "Информатика – это наука об общих свойствах и закономерностях информации, методах ее поиска, передачи, хранения, обработки и использования в различных сферах деятельности" (БЭС, 2003). Кроме того, так как предметом изучения информатики являются свойства информации,закономерности ее переработки и управления в природных, социальных и технических процессах, она становится наукой, играющей важнейшую прикладную рольв естественных, общественных и технических науках. В связи с этим, основной задачей информатики является предоставление своего аппарата, методов и понятийной базы другим наукам. Развитие информатики как науки неразрывно связано с развитием техники и поэтому идет параллельно с развитием инженерно-технических возможностей своего времени. Основные понятия информатики Информация – это единственный неубывающий ресурс жизнеобеспечения, который к тому же с течением времени возрастает. Так, к концу XX века ежегодно количество информации стало удваиваться. Такой лавинообразный поток информации серьёзно затрудняет её обработку, поиск и использование. Порой легче создать новый интеллектуальный продукт, чем искать аналоги, созданные прежде. Информационные ресурсы становятся столь же важными, как и материалы или энергия, т.е. постепенно происходит переход от индустриальной экономики к экономике, основанной на информации. Термин "информация" происходит от латинского information – разъяснение, изложение, осведомление о каком-либо факте или событии. В последнее время информацию чаще относят к разделу общенаучных понятий, т.к. она выходит за рамки какой-то одной отрасли знаний и используется многими науками. Под информацией – понимают совокупность фактов, явлений, событий, представляющих интерес и подлежащих регистрации и обработке. В теории информации под термином "информация" понимается такое сообщение, которое содержит факты, неизвестные ранее потребителю и дополняющие его представление об изучаемом и анализируемом объекте (процессе, явлении). Иначе говоря, по К.Э.Шеннону, информация – это снятая неопределённость. То есть с точки зрения теории информации информацией могут быть лишь те сведения, которые позволяют устранить меру неопределённости в системе. И лишь получатель этих сведений может установить, представляют ли они собой информацию. В теории информации термин "информация" идет рядом с таким понятием как "данные". Под данными понимают сведения о состоянии любого объекта. Данные – это информация, представленная в виде, удобном для передачи, интерпретации и обработки. А обработка данных – это некоторая систематизированная последовательность операций, приводящая данные к виду, удобному для получения из них информации. Кроме того, информация из данных получается только в результате воздействия на данные каких-либо методов, т.е. имеет место выражение: Информация = Данные + Методы. В результате, одни и те же данные при обработке различными методами могут привести к различной информации. Так, обнаруженный листок с записями номеров телефонов в результате воздействия визуальных методов дает информацию о почерке автора записи, в результате воздействия методов химического анализа расскажет об инструменте письма (о виде чернил), а постановка соответствия каждому номеру данных его владельца выявит не только круг знакомств автора, но и откроет много информации о его собственной личности. Следует также отметить, что нет однозначной связи между формой данных и формой получаемой из них информации. Т.е. данные могут быть, например звуковые (или речевые), а информацию они могут дать не только звуковую, но и текстовую (если ее записать словами) или графическую (если озвученные образы нарисовать). Таким образом, информациюможно рассматривать как содержательную часть данных, интерпретированных человеком. Следующим основным (после информации и данных) понятием, на котором базируется информатика как наука, являются знания. Знаниями называют проверенный практикой результат познания действительности, её верное отражение в сознании человека. Научное знание заключается в понимании действительности (от прошлого к настоящему и будущему), в достоверном обобщении фактов, в выявлении закономерностей и т.п. В системах искусственного интеллекта, которые в настоящее время занимают лидирующее положение среди всех компьютерных информационных систем, знания связывают с понятием логического вывода. Поэтому знания можно интерпретировать как информацию, на основе которой реализуется процесс логического вывода. В зависимости от области знаний различают научную, техническую, производственную, правовую и другую информацию, каждая из которых несет свою особую смысловую нагрузку, ценность и требования к точности, достоверности, технологии обработки и т.д. Экономическая информация Экономическая информатика изучает структуру и свойства экономической информации, а также методы ее переработки при помощи вычислительной техники. Среди задач экономической информатики в настоящее время особое внимание заслуживает обеспечение массового внедрения вычислительной техники и повсеместной автоматизации функций специалистов различных профессий и разного квалификационного уровня. Реализация этой задачи осуществляется на основе массового производства и внедрения автоматизированных рабочих мест (АРМ), созданных на базе персональных ЭВМ. Термин "экономическая" подчёркивает принадлежность информации к определённой научной отрасли – экономике. То есть экономическая информация – это информация, используемая при осуществлении функций управления экономикой страны и ее отдельными звеньями. Другими словами экономическая информация – это совокупность сведений, используемых для планирования, учёта, контроля, регулирования при управлении макро- и микроэкономикой. Экономическая информация циркулирует как в сфере материального производства, так и в непроизводственной сфере, характеризуядеятельность тех или иных учреждений и отраслей этой сферы, являясь важным инструментом управления экономикой. В наше время экономическая информация выдвинулась в ряд важнейших ресурсов, социально-экономического развития. Словосочетание "экономическая информация" вошло в обиход в 60-х годах прошлого столетия с внедрением средств вычислительной техники в сферу управления народным хозяйством. Её исследование позволило выявить ряд особенностей, влияющих на организацию её автоматизированнойобработки. Особенности экономической информации 1. Форма представления: информация отражается на материальных носителях в виде первичных и сводных документов; результаты обработки представляются в виде таблиц, диаграмм, графиков и текстовых документов; передача и обработка производится при юридическом подтверждении подлинности информации, что выражается, например, наличием подписи на документе (традиционном или электронном). 2. Объемность выражается большим объёмом входной и выходной информации. Совершенствование управления, возрастание объёмов производства сопровождается увеличением сопутствующих ему информационных потоков. Кроме того, объемность вызвана и длительностью хранения экономической информации, т.к. некоторые документы хранятся до 50 лет, а некоторые – всегда. 3. Цикличность вызвана повторяемостью стадий большинства производственных и хозяйственных процессов, а, следовательно, и информации, отражающей эти процессы. Задачи обработки данных обладают заданной периодичностью решения, причём, зачастую имеют ограниченный срок обработки. 4. Способы обработки экономической информации отличаются преобладанием арифметических и, в первую очередь, логических операций, таких как поиск, сортировка, группировка, отбор.При обработке экономической информации происходит многократное использование одних и тех же исходных данных для разных целей. 5. Экономическая информация отражает результаты производственно-хозяйственной деятельности с помощью натуральных и стоимостных показателей. Требования, предъявляемые к экономической информации Корректность информации обеспечивает её однозначное восприятие всеми потребителями. Полезность(илиценность) информации определяется ее новизной и точной адресацией. Следует иметь в виду, что старит информацию не время, а появление новой информации, которая отвергает полностью или частично имеющуюся, уточняет её и дополняет. Оперативность отражает актуальность информации для необходимых расчётов и принятия решений в изменившихся условиях. Точность определяет допустимый уровень искажения как исходной, так и результатной информации, при котором сохраняется эффективность функционирования системы. Достоверность предполагает, что приведенной информации можно доверять, т.е. в ней отсутствуют преднамеренные и непреднамеренные искажения (например, вызванные недостаточной точностью приборов, отображающих тот или иной параметр). Устойчивость – это способность реагировать на изменения исходных данных без нарушения точности. Достаточность – это наличие такого оптимального количества информации, которое необходимо для принятия правильного решения. Избыток информации не менее вреден, чем недостаток, ибо он может вводить в заблуждение пользователя и замедлять процесс её обработки. Информатизация и информационное общество В настоящее время важнейшим показателем уровня научного развития, экономической и оборонной мощи государства становится информация. Чем больше ее производится в народном хозяйстве, тем выше жизненный уровень населения, экономический и политический вес страны. Информатизация общества – это повсеместное внедрение комплекса мер, направленных на обеспечение полного и своевременного использования достоверной информации, обобщенных знаний во всех социально значимых видах человеческой деятельности. В настоящее время по своему социальному значению информатизация общества сопоставима с его индустриализацией. Эта новая отрасль определяет технический уровень хозяйства. Информатизация является реакцией общества на существенный рост информационных ресурсов и на потребность в увеличении производительности труда в информационном секторе общественного производства. Информатизация обеспечивает не только рост экономических показателей, развитие народного хозяйства, но и получение новых научных достижений в фундаментальных и прикладных науках, направленных на развитие производства, создание новых рабочих мест, повышение жизненного уровня. Успех в этом вопросе возможен при наличии программы создания информационной инфраструктуры. Под информационной инфраструктурой понимается структура системы информационного обеспечения всех потребителей информации, которая предоставляет им возможность использования новых информационных технологий на базе широкого применения информационно-вычислительных ресурсов и автоматизированной системы связи. Обмен информацией, ее обработка и хранение – одна из важнейших задач, которую решает человечество. Информатизация общества привела к фундаментальным изменениям в занятости, организационных структурах и стиле жизни людей. Наступила эра информационного общества, пришедшая на смену прежним аграрному и индустриальному обществам. Информационное общество – это общество, в котором большинство работающих занято производством, хранением, переработкой и реализацией информации, особенно высшей ее формы – знаний. Можно выделить характерные черты информационного общества: 1. Информационные технологии приобрели глобальный характер, охватив все сферы социальной деятельности человека, реализованы гуманистические принципы управления обществом и воздействия на окружающую среду. 2. Обеспечен приоритет информации по сравнению с другими ресурсами. 3. В основу общества заложены автоматизированные процессы: генерация, хранение, обработка и использование знаний, – сформировано единство всей человеческой цивилизации. 4. Разрешено противоречие между информационной лавиной и информационным голодом. Перечисленные черты информационного общества порождают следующие проблемы: проблема адаптации людей в новой информационной среде; проблема отбора качественной и достоверной информации; увеличение разрыва между разработчиками и потребителями информационных технологий; возрастание влияния на общество средств массовой информации; нарушение частной жизни организаций и людей; и др. Обратной стороной медали роста объема информации можно назвать информационный голод ввиду невозможности вовремя найти и получить в необходимом объеме требуемую информацию. Согласно закону А.А. Харкевича, информация растет пропорционально квадрату национального дохода страны. Потоки информации растут по экспоненте. И неизбежно наступает информационный барьер, когда сложность задач обработки информационных потоков превышает человеческие возможности. Человек, являясь основным носителем прогресса, сдерживает его движение, будучи уже не в состоянии воспринять и переработать весь объем информации, необходимой для принятия своевременного решения. На помощь ему пришли вычислительные машины, методика применения которых постоянно совершенствуется. И лишь компьютеризация позволяет осуществлять обработку информации в нужном объеме. Компьютеризация – это массовое использование вычислительной техники и программного обеспечения. Успех компьютеризации может быть обеспечен при трех условиях: высоком качестве техники, программных средств и хорошо организованном сервисе обслуживания. Из года в год растут требования к высокой технической культуре и компьютерной грамотности людей. Поэтому в комплекс наиболее необходимых знаний, кроме историко-культурных, включают и компьютерную грамотность. В создавшейся ситуации определены основные сферы информатизации и компьютеризации общества: 1. Организация экономической информации на предприятиях. Предприятию постоянно нужна достоверная и оперативная информация о номенклатуре, ценах и изготовителях изделия, о рынках труда и сбыта, о спросе и предложении в стране и за рубежом и т.п. 2. Создание системы информационных услуг для населения с использованием компьютеров, которая значительно сберегает время и освобождает людей для самообразования и творческой работы. 3. Организация системы здравоохранения и социального обеспечения с применением ЭВМ, позволяющей наладить работу компьютерных консультационных центров, создать диагностические компьютерные экспертные системы, наладить учет и обслуживание инвалидов, одиноких, больных и престарелых людей. 4. Компьютеризация системы образования и науки, которая ускорит и обеспечит процесс добывания знаний за счет создания обучающих систем и доступных баз знаний; появление в эксплуатации аудио видеокассет с учебными видео курсами, систем электронных книг и журналов. Технологии,ориентированные на получение, обработку, хранение и распространение (передачу) информации получили название информационных технологий. Информационные технологии проникают во все сферы человеческой деятельности. Они в своем развитии прошли несколько этапов, которые условно можно назвать так: ручной (хранение и передача информации с помощью письменности), механический (книгопечатание), электрический (электрическая машинка, ксерокс), электронный, или компьютерный. Говоря об истории развития информационных технологий, не следует забывать и о развитии важного ее элемента – коммуникации (связи). Вотличие от любой инженерной технологии, информационные технологии позволяют интегрировать различные виды технологий, а информация, которую они обрабатывают в различных сферах деятельности, синтезируется для накопления опыта и внедрения в практику в соответствии с общественными потребностями. ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА История развития вычислительной техники Стремительное развитие цифровой вычислительной техники (ВТ) и становление науки о принципах ее построения и проектирования началось в 40-х годах XX века, когда технической базой ВТ стала электроника и микроэлектроника, а основой для развития архитектуры компьютеров (называемых ранее ЭВМ) – достижения в области искусственного интеллекта. До этого времени в течение почти 500 лет ВТ сводилась к простейшим устройствам для выполнения арифметических операций над числами. Основой практически всех изобретенных за 5 столетий устройств было зубчатое колесо, рассчитанное на фиксацию 10 цифр десятичной системы счисления. Первый в мире эскизный рисунок тринадцатиразрядного десятичного суммирующего устройства на основе таких колес принадлежит Леонардо да Винчи. Первым реально осуществленным механическим цифровым вычислительным устройством стала "Паскалина" великого французского ученого Блеза Паскаля, которая представляла собой 6-ти (или 8-ми) разрядное устройство, на зубчатых колесах, рассчитанное на суммирование и вычитание десятичных чисел (1642 г.). Через 30 лет после "Паскалины" в 1673 г. появился "арифметический прибор" Готфрида Вильгельма Лейбница - двенадцатиразрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление. В конце XVIII века во Франции произошли два события, имеющие принципиальное значение для дальнейшего развития цифровой вычислительной техники. К таким событиям относятся: изобретение Жозефом Жакардом программного управления ткацким станком с помощью перфокарт; разработка Гаспаром де Прони, технологии вычислений, разделившей численные вычисления на три этапа: разработка численного метода, составление программы последовательности арифметических действий, проведение собственно вычислений путем арифметических операций над числами в соответствии с составленной программой. Указанные новшества позже были использованы англичанином Чарльзом Беббиджем, осуществившим, качественно новый шаг в развитии средств ВТ – переход от ручного к автоматическому выполнению вычислений по составленной программе. Им был разработан проект Аналитической машины - механической универсальной цифровой вычислительной машины с программным управлением (1830-1846 гг.). Машина состояла из пяти устройств: арифметическое (АУ); запоминающее (ЗУ); управления (УУ); ввода (УВВ); вывода (УВ). Именно из таких устройств и состояли первые ЭВМ, появившиеся спустя 100 лет. АУ строилось на основе зубчатых колес, на них же предлагалось реализовать ЗУ (на тысячи 50-разрядных чисел). Для ввода данных и программы использовались перфокарты. Предполагаемая скорость вычислений - сложение и вычитание за 1 сек, умножение и деление - за 1 мин. Помимо арифметических операций имелась команда условного перехода. Следует отметить, что хотя и были созданы отдельные узлы машины, всю машину из-за ее громоздкости создать не удалось. Только зубчатых колес для нее понадобилось бы более 50 000. Изобретатель намечал использовать паровую машину для приведения в действие своей аналитической машины . В 1870 г. (за год до смерти Беббиджа) английский математик Джевонс сконструировал первую в мире "логическую машину", позволяющую механизировать простейшие логические выводы. Создателями логических машин в дореволюционной России стали Павел Дмитриевич Хрущев (1849-1909) и Александр Николаевич Щукарев (1884-1936), работавшие в учебных заведениях Украины. Гениальную идею Беббиджа осуществил американский ученый Говард Айкен, создавший в 1944 г. первый в США релейно-механический компьютер. Ее основные блоки – арифметики и памяти – были исполнены на зубчатых колесах. Если Беббидж намного опередил свое время, то Айкен, использовав все те же зубчатые колеса, в техническом плане при реализации идеи Беббиджа использовал устаревшие решения. Следует отметить, что десятью годами ранее, в 1934 г. немецкий студент Конрад Цузе, работавший над дипломным проектом, решил сделать цифровую вычислительную машину с программным управлением. В этой машине впервые в мире была использована двоичная система исчисления. В 1937 г. машина Z1 произвела первые вычисления. Она была двоичной 22-х разрядной с плавающей запятой с памятью на 64 числа, и работала на чисто механической (рычажной) основе. В том же 1937 г., когда заработала первая в мире механическая двоичная машина Z1, Джон Атанасов (болгарин по происхождению, живший в США) начал разработку специализированного компьютера, впервые в мире применив электронные лампы (300 ламп). В 1942-43 годах в Англии была создана (с участием Алана Тьюринга) вычислительная машина "Колоссус". Эта машина, состоящая из 2000 электронных ламп, предназначалась для расшифровки радиограмм германского вермахта. Поскольку работы Цузе и Тьюринга были секретными, о них в то время знали немногие и они не вызвали какого-либо резонанса в мире. Только в 1946 г. появилась информация об ЭВМ "ЭНИАК" (электронный цифровой интегратор и компьютер), созданной в США Д. Мочли и П. Эккертом, с применением электронной техники. В машине использовалось 18 тысяч электронных ламп, и она выполняла около 3-х тыс. операций в сек. Однако, машина оставалась десятичной, а ее память составляла лишь 20 слов. Программы хранились вне оперативной памяти. Почти одновременно, в 1949-52 гг. ученые Англии, Советского Союза и США (Морис Уилкс, ЭВМ "ЭДСАК", 1949 г.; Сергей Лебедев, ЭВМ "МЭСМ", 1951 г.; Исаак Брук, ЭВМ "М1", 1952 г.; Джон Мочли и Преспер Эккерт, Джон фон Нейман ЭВМ "ЭДВАК", 1952 г.), создали ЭВМ с хранимой в памяти программой. В общем случае выделяют пять поколений ЭВМ. Первое поколение (1945-1954) характеризуется появлением техники на электронных лампах. Это эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютеров были такими, что они нередко требовали для себя отдельных зданий. Основоположниками компьютерной науки по праву считаются Клод Шеннон – создатель теории информации, Алан Тьюринг – математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, – кибернетика – наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер. Во втором поколении (1955-1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу. Но главные достижения этой эпохи принадлежат к области программ. Во втором поколении впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров. При этом расширялась сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике, поскольку компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже начали компьютеризовать свою бухгалтерию, предвосхищая этот процесс на двадцать лет. В третьем поколении (1965-1974) впервые стали использоваться интегральные схемы - целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (микросхемы). В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. В эти годы производство компьютеров приобретает промышленный размах. Фирма IBM первой реализовала серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ. Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. В 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию. Микропроцессор является главной составляющей частью современного персонального компьютера. На рубеже 60-х и 70-х годов двадцатого столетия (1969 г) зародилась первая глобальная компьютерная сеть ARPA, прототип современного Интернета. В том же 1969 г. одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение. Четвертое поколение (1975 – 1985) характеризуется все меньшим количеством принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров. Самая главная новация четвертого поколения – это появление в начале 80-х годов персональных компьютеров. Благодаря персональным компьютерам вычислительная техника становится по-настоящему массовой и общедоступной. Несмотря на то, что персональные и миникомпьютеры по-прежнему в вычислительных мощностях отстают от больших машин, львиная доля новшеств, таких как графический пользовательский интерфейс, новые периферийные устройства, глобальные сети, связана появлением и развитием именно этой техники. Большие компьютеры и суперкомпьютеры, конечно же, продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше. Некоторые характеристики вычислительной техники четырех поколений приведены в табл. 1.1. Таблица 1.1 Поколения вычислительной техники
Пятое поколение (1986 до настоящего времени) в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме высокой производительности и надежности при более низкой стоимости с помощью новейших технологий, должны удовлетворять следующим качественно новым функциональным требованиям: обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом, а также диалоговой обработки информации с использованием естественных языков; обеспечить возможность обучаемости, ассоциативных построений и логических выводов; упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках; улучшить основные характеристики и эксплуатационные качества вычислительной техники для удовлетворения различных социальных задач, улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ; обеспечить разнообразие вычислительной техники, высокую адаптируемость к приложениям и надежность в эксплуатации. В настоящее время ведутся интенсивные работы по созданию оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой, представляющих собой распределенную сеть большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем Классификация электронно-вычислительных машин В общем случае ЭВМ можно классифицировать по ряду признаков. 1. По принципу действия ЭВМ делятся на три больших класса в зависимости от формы представления информации, с которой они работают: АВМ – аналоговые вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, то есть в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения); ЦВМ – цифровые вычислительные машины дискретного действия, работают с информацией, представленной в дискретной (цифровой) форме; ГВМ – гибридные вычислительные машины комбинированного действия работают с информацией, представленной как в цифровой, так и в аналоговой форме. ГВМ совмещают в себе достоинства АВМ и ЦВМ. Их целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами. 2. По назначению ЭВМ можно разделить на три группы: универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах. Характерными чертами универсальных ЭВМ является: высокая производительность; разнообразие форм обрабатываемых данных при большом диапазоне их изменения и высокой степени их представления; обширная номенклатура выполняемых операций, как арифметических, логических, так и специальных; большая емкость оперативной памяти; развитая организация системы ввода-вывода информации, обеспечивающая подключение разнообразных видов внешних устройств; проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими процессами. Они используются для регистрации, накопления и обработки относительно небольших объемов данных, выполнения расчетов по относительно несложным алгоритмам. Проблемно-ориентированные ЭВМ обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами; специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Узкая ориентация ЭВМ позволяет четко определить их структуру, существенно снизить сложность и стоимость при сохранении высокой производительности и надежности их работы. К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения, а также адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами согласования и сопряжения работы узлов вычислительных систем. 3. По размерам и функциональным возможностям ЭВМ делятся на: сверхбольшие (суперЭВМ) – мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов - десятки миллиардов операций в секунду с объемом оперативной памяти в десятки Гбайт. В настоящее время в мире насчитывается несколько тысяч суперЭВМ, таких как Cray 3, Cray 4, Cray Y-MP C90 фирмы Cray Research, Cyber 205 фирмы Control Data, SХ-3 и SХ-Х фирмы NЕС, VP 2000 фирмы Fujitsu (Япония), VРР 500 фирмы Siemens (ФРГ). большие ЭВМ чаще всего называют мэйнфреймами (Mainframe). К мэйнфреймам относят, как правило, компьютеры, имеющие производительность десятки миллионов операций в секунду, емкость памяти до 1000 Мбайт и многопользовательский режим работы. Основные направления эффективного применения мэйнфреймов – это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами. Родоначальником современных больших ЭВМ является фирма IBM. малые (мини-ЭВМ) используются чаще всего для управления технологическими процессами. Они более компактны и значительно дешевле больших ЭВМ. Их появление (70 годы прошлого столетия) обусловлено, с одной стороны, прогрессом в области электронной элементной базы, а с другой – избыточностью ресурсов больших ЭВМ для ряда приложений. Мини-ЭВМ имеют быстродействие десятки миллионов операций в секунду, объем оперативной памяти 512 Мбайт, и могут также поддерживать многопользовательский режим. Первыми мини ЭВМ были компьютеры РDР-11 (Program Driven Processor – программно-управляемый процессор) фирмы DЕС, США. Они явились прообразом советских мини ЭВМ (СМ ЭВМ): CM 1, 2,3,4,1400,1700 и др. сверхмалые (микро-ЭВМ)обязаны своим появлением изобретению микропроцессора, наличие которого служило первоначально определяющим признаком микроЭВМ, хотя сейчас микропроцессоры используются во всех без исключения классах ЭВМ. Микро-ЭВМ делятся на универсальные и специализированные; в свою очередь и универсальные и специализированные микро-ЭВМ делятся на многопользовательские и однопользовательские: - Универсальные многопользовательские микроЭВМ представляют собой мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям. - Универсальная однопользовательская микро-ЭВМ – это ничто иное, как хорошо известный персональный компьютер (ПК). - Специализированные многопользовательские микро-ЭВМ используются в сетевых вычислительных системах и называются серверами. - Специализированные однопользовательские микро-ЭВМ представляют собой рабочие станции, и используются для выполнения определенного вида работ (графических, инженерных, издательских и др.). Следует отметить, что приведенная выше классификация ЭВМ носит достаточно условный характер и может быть расширена по ряду других признаков. Принципы строения и функционирования ЭВМ Джона фон Неймана Большинство современных ЭВМ функционируют на основе принципов, сформулированных в 1945 году американским ученым венгерского происхождения Джоном фон Нейманом: 1. Принцип двоичного кодирования. Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных символов (сигналов). 2. Принцип программного управления. Компьютерная программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. 3. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. 4. Принцип адресности. Структурно основная память состоит из пронумерованных ячеек, любая из которых которая доступна процессору в произвольный момент времени. Согласно фон Нейману, ЭВМ состоит из следующих основных блоков (рис 2.1): 1) устройства ввода/вывода информации; 2) памяти ЭВМ; 3) процессора, включающего устройство управления (УУ) и арифметико-логическое устройство (АЛУ) В ходе работы ЭВМ информация через устройства ввода попадает в память. Процессор извлекает из памяти обрабатываемую информацию, работает с ней и помещает в нее результаты обработки. Полученные результаты через устройства вывода сообщаются человеку. П амять ЭВМ состоит из двух видов памяти: внутренняя (оперативная) и внешняя (долговременная) память. Оперативная память – это электронное устройство, которое хранит информацию, пока питается электроэнергией. Внешняя память – это различные магнитные носители (ленты, диски), оптические диски. За прошедшие десятилетия процесс совершенствования ЭВМ шел в рамках приведенной обобщенной структуры. Персональные компьютеры |