Главная страница
Навигация по странице:

  • 2. Конструкторская часть 8 2.1 Выбор и обоснование технологии построения ЛВС 8 2.2 Анализ среды передачи данных 8 2.3 Топология сети 8

  • 2.4 Метод доступа 9 3. Выбор и обоснование аппаратного обеспечения сети 10 3.1 Коммуникационные устройства 10 3.2 Сетевое оборудование 13

  • 3.3 Планировка помещений 16 3.4 Расчет количества кабеля 19 4. Инструкция по монтажу сети 22 5. Расчет стоимости оборудования 30

  • 1. Создание ЛВС в школе

  • 2. Конструкторская часть 2.1 Выбор и обоснование технологии построения ЛВС.

  • 2.2 Анализ среды передачи данных.

  • 3. Выбор и обоснование аппаратного обеспечения сети 3.1 Коммуникационные устройства

  • 3.2 Сетевое оборудование

  • 3.3 Планировка помещений

  • Схема сети на первом этаже Рис. 2 Схема сети на втором этаже

  • Схема сети на 3 этаже 3.4 Расчет количества кабеля

  • 4. Инструкция по монтажу сети

  • 5. Расчет стоимости оборудования

  • Наименование Стоимость

  • 6. Перспективы развития сети

  • ЛВС школы. Инструкция по монтажу сети 22 Расчет стоимости оборудования 30 Заключение 31


    Скачать 3.66 Mb.
    НазваниеИнструкция по монтажу сети 22 Расчет стоимости оборудования 30 Заключение 31
    АнкорЛВС школы
    Дата09.05.2023
    Размер3.66 Mb.
    Формат файлаdocx
    Имя файлаЛВС школы.docx
    ТипИнструкция
    #1116611

    Проектирование ЛВС в общеобразовательной средней школе

    СОДЕРЖАНИЕ
    Введение 3

    1. Создание ЛВС в школе 4

    2. Конструкторская часть 8

    2.1 Выбор и обоснование технологии построения ЛВС 8

    2.2 Анализ среды передачи данных 8

    2.3 Топология сети 8

    2.4 Метод доступа 9

    3. Выбор и обоснование аппаратного обеспечения сети 10

    3.1 Коммуникационные устройства 10

    3.2 Сетевое оборудование 13

    3.3 Планировка помещений 16

    3.4 Расчет количества кабеля 19

    4. Инструкция по монтажу сети 22

    5. Расчет стоимости оборудования 30

    Заключение 31

    Список литературы 33

    Введение
    Локальная вычислительная сеть - это совместное подключение нескольких компьютеров к общему каналу передачи данных, благодаря которому обеспечивается совместное использование ресурсов, таких, как базы данных, оборудование, программы. С помощью локальной сети удаленные рабочие станции объединяются в единую систему, имеющую следующие преимущества:

    1. Разделение ресурсов - позволяет совместно использовать ресурсы, например, периферийные устройства (принтеры, сканеры), всеми станциями, входящими в сеть.

    2. Разделение данных - позволяет совместно использовать информацию, находящуюся на жестких дисках рабочих станций и сервера.

    3. Разделение программных средств - обеспечивает совместное использование программ, установленных на рабочих станциях и сервере.

    4. Разделение ресурсов процессора - возможность использования вычислительных мощностей для обработки данных другими системами, входящими в сеть.

    Разработка локальной вычислительной сети будет вестись в здании общеобразовательной школы.

    Цель данной работы- расчет технических характеристик разрабатываемой сети, определение аппаратных и программных средств, расположение узлов сети, каналов связи, расчет стоимости внедрения сети.
    1. Создание ЛВС в школе
    За последние годы произошло коренное изменение роли и места персональных компьютеров и информационных технологий в жизни общества. Современный период развития общества определяется как этап информатизации. Информатизация общества предполагает всестороннее и массовое внедрение методов и средств сбора, анализа, обработки, передачи, архивного хранения больших объемов информации на базе компьютерной техники, а также разнообразных устройств передачи данных, включая телекоммуникационные сети.

    Концепция модернизации образования, проект “Информатизация системы образования” и, наконец, технический прогресс ставят перед образованием задачу формирования ИКТ - компетентной личности, способной применять знания и умения в практической жизни для успешной социализации в современном мире.

    Процесс информатизации школы предполагает решение следующих задач:

    • развитие педагогических технологий применения средств информатизации и коммуникации на всех ступенях образования;

    • использование сети Интернет в образовательных целях;

    • создание и применение средств автоматизации психолого-педагогических тестирующих, диагностирующих методик контроля и оценки уровня знаний обучаемых, их продвижения в учении, установления уровня интеллектуального потенциала обучающегося;

    • автоматизация деятельности административного аппарата школы;

    • подготовка кадров в области коммуникативно-информационных технологий.

    Локальная сеть объединяет компьютеры, установленные в одном помещении (например, школьный компьютерный класс, состоящий из 8—12 компьютеров) или в одном здании (например, в здании школы могут быть объединены в локальную сеть несколько десятков компьютеров, установленных в различных предметных кабинетах).

    Локальная вычислительная сеть, ЛВС ( англ. Local Area Network, LAN ) компьютерная сеть, покрывающая относительно небольшую территорию.

    В небольших локальных сетях все компьютеры обычно равноправны, т. е. пользователи самостоятельно решают, какие ресурсы своего компьютера (диски, каталоги, файлы) сделать общедоступными по сети. Такие сети называются одноранговыми.

    Для увеличения производительности локальной сети, а также в целях обеспечения большей надежности при хранении информации в сети некоторые компьютеры специально выделяются для хранения файлов или программ-приложений. Такие компьютеры называются серверами, а локальная сеть — сетью на основе серверов.

    Типичная школьная локальная сеть выглядит следующим образом. Имеется одна точка выхода в Интернет, к которой подключается соответствующий маршрутизатор (ADSL или Ethernet). Маршрутизатор связан с коммутатором (свичем), к которому уже подключаются пользовательские ПК. На маршрутизаторе практически всегда активирован DHCP-сервер, что подразумевает автоматическую раздачу IP-адресов всем пользовательским ПК. Собственно, в таком решении есть как свои плюсы, так и минусы. С одной стороны, наличие DHCP-сервера упрощает процесс создания сети, поскольку нет необходимости вручную производить сетевые настройки на компьютерах пользователей. С другой стороны, в условиях отсутствия системного администратора вполне типична ситуация, когда никто не знает пароля доступа к маршрутизатору, а стандартный пароль изменен. Казалось бы, зачем вообще нужно «лезть» в маршрутизатор, если и так все работает? Так-то оно так, но бывают неприятные исключения. К примеру, количество компьютеров в школе увеличилось (оборудовали еще один класс информатики) и начались проблемы с конфликтами IP-адресов в сети. Дело в том, что неизвестно, какой диапазон IP-адресов зарезервирован на маршрутизаторе под раздачу DHCP-сервером, и вполне может оказаться, что этих самых IP-адресов просто недостаточно. Если такая проблема возникает, то единственный способ решить ее, не залезая при этом в настройки самого маршрутизатора, — это вручную прописать все сетевые настройки (IP-адрес, маску подсети и IP-адрес шлюза) на каждом ПК. Причем, дабы избежать конфликта IP-адресов, сделать это нужно именно на каждом ПК. В противном случае назначенные вручную IP-адреса могут оказаться из зарезервированного для раздачи DHCP-сервером диапазона, что со временем приведет к конфликту IP-адресов.

    Другая проблема заключается в том, что все компьютеры, подключенные к коммутатору и соответственно имеющие выход в Интернет через маршрутизатор, образуют одну одноранговую локальную сеть, или просто рабочую группу. В эту рабочую группу входят не только компьютеры, установленные в школьном компьютерном классе, но и все остальные компьютеры, имеющиеся в школе. Это и компьютер директора, и компьютер завуча, и компьютеры секретарей, и компьютеры бухгалтерии (если таковая имеется в школе), и все остальные компьютеры с выходом в Интернет. Конечно, было бы разумно разбить все эти компьютеры на группы и назначить каждой группе пользователей соответствующие права. Но, как мы уже отмечали, никакого контроллера домена не предусмотрено, а потому реализовать подобное просто не удастся. Конечно, эту проблему можно было бы частично решить на аппаратном уровне, организовав несколько виртуальных локальных сетей (VLAN) и тем самым физически отделив ученические ПК от остальных компьютеров. Однако для этого нужен управляемый коммутатор (или хотя бы Smart-коммутатор), наличие которого в школе — большая редкость. Но даже если такой коммутатор и имеется, то нужно еще уметь настраивать виртуальные сети. Можно даже не использовать виртуальные сети, а установить дополнительный маршрутизатор и коммутатор и применять различную IP-адресацию (IP-адреса из разных подсетей) для компьютеров в классе информатики и всех остальных компьютеров. Но опять-таки это требует дополнительных затрат на приобретение соответствующего оборудования и опыта по настройке маршрутизаторов. К сожалению, решить проблему разделения школьных компьютеров на изолированные друг от друга группы без дополнительных финансовых затрат нельзя (наличие управляемого коммутатора в школе. исключение из правил). В то же время подобное разделение и не является обязательным. Если рассматривать необходимость такого разделения с точки зрения сетевой безопасности, то проблему безопасности компьютеров учителей и администрации от посягательств со стороны учеников можно решить и другим способом.


    2. Конструкторская часть
    2.1 Выбор и обоснование технологии построения ЛВС.
    Основным назначением проектируемой вычислительной сети является обеспечение коммуникации между компьютерами сети и предоставление воз-можности передачи файлов на скорости до 100 Мбит/с. Таким образом, для построения ЛВС для всех отделов здания будет использоваться технология Fast Ethernet.

    Технологии построения ЛВС. В данной работе для построения сети будет использоваться технология Fast Ethernet, обеспечивающая скорость передачи данных 100 Мбит/с. Также будет применена топология «звез-да» с использованием в качестве линий связи неэкранированной витой пары ка-тегории CAT5.
    2.2 Анализ среды передачи данных.
    Для передачи данных в Fast Ethernet будет применяться стандарт 100 Base-TX. Используется 4-парный ка-бель категории CAT5. В передаче данных участвуют все пары. Параметры:

     скорость передачи данных: 100 Мбит/с;

     тип используемого кабеля: неэкранированная витая пара категории CAT5;

     максимальная длина сегмента: 100 м.
    2.3 Топология сети.
    Топология сети определяется размещением узлов в сети и связей между ними. Термин «топология сети» относится к пути, по кото-рому данные перемещаются в сети. Для технологии Fast Ethernet будет использоваться топология «звезда».

    Для построения сети со звездообразной архитектурой в центре сети необходимо разместить концентратор (коммутатор). Его основная функция -обеспечение связи между компьютерами, входящими в сеть. То есть все компьютеры, включая файл-сервер, не связываются непосредственно друг с другом, а присоединяются к концентратору. Такая структура надежнее, поскольку в случае выхода из строя одной из рабочих станций все остальные сохраняют работоспособность. Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой, невысокая по сравнению с достигаемой в других топологиях.
    2.4 Метод доступа.
    В сетях Fast Ethernet используется метод доступа CSMA/CD. Основная концепция этого метода заключается в следующем:

    - все станции прослушивают передачи по каналу, определяя состояние канала;

    - проверка несущей;

    - начало передачи возможно лишь после обнаружения свободного состо-яния канала;

    - станция контролирует свою передачу, при обнаружении столкновения (коллизии) передача прекращается и станция генерирует сигнал столкновения;

    - передача возобновляется через случайный промежуток времени, дли-тельность которого определяется по специальному алгоритму, если канал в этот момент окажется свободным;

    - несколько неудачных попыток передачи интерпретируются станцией как отказ сети.

    Даже в случае CSMA/CD может возникнуть ситуация коллизии, когда две или больше станций одновременно определяют свободный канал и начинают по-пытку передачи данных.

    3. Выбор и обоснование аппаратного обеспечения сети
    3.1 Коммуникационные устройства
    Выбор сетевого адаптера.

    Сетевой адаптер - это периферийное устройство компьютера,
    непосредственно взаимодействующее со средой передачи данных, которая
    прямо или через другое коммуникационное оборудование связывает его с
    другими компьютерами. Это устройство решает задачи надежного обмена
    двоичными данными, представленными соответствующими электромагнитными сигналами, по внешним линиям связи. Сетевой адаптер подключается посредством шины PCI на материнскую плату.

    Сетевой адаптер обычно выполняет следующие функции:

    • оформление передаваемой информации в виде кадра определенного формата.

    • получение доступа к среде передачи данных.

    • кодирование последовательности бит кадра последовательностью электрических сигналов при передаче данных и декодирование при их приеме.

    • преобразование информации из параллельной формы в последовательную и обратно.

    • синхронизация битов, байтов и кадров.

    В качестве сетевых адаптеров выбираются сетевые платы TrendNet ТЕ 100-PCIWN.
    Выбор концентратора (коммутатора).

    Концентратор (повторитель), является центральной частью компьютерной сети в случае реализации топологии «звезда».

    Основная функция концентратора - повторение сигналов, поступающих на его порт. Повторитель улучшает электрические характеристики сигналов и их синхронность, и за счет этого появляется возможность увеличивать общую длину кабеля между самыми удаленными в сети узлами.

    Многопортовый повторитель часто называют концентратором или хабом, что отражает тот факт, что данное устройство реализует не только функцию повторения сигналов, но и концентрирует в одном центральном устройстве функции объединения компьютеров в сеть.

    Отрезки кабеля, соединяющие два компьютера или какие либо два других сетевых устройства, называются физическими сегментам, поэтому концентраторы и повторители, которые используются для добавления новых физических сегментов, являются средством физической структуризации сети.

    Концентратор - устройство, у которого суммарная пропускная способность входных каналов выше пропускной способности выходного канала. Так как потоки входных данных в концентраторе больше выходного потока, то главной его задачей является концентрация данных.

    Концентратор является активным оборудованием. Концентратор служит центром (шиной) звездообразной конфигурации сети и обеспечивает подключение сетевых устройств. В концентраторе для каждого узла (ПК, принтеры, серверы доступа, телефоны и пр.) должен быть предусмотрен отдельный порт.
    Коммутаторы.

    Коммутаторы контролируют сетевой трафик и управляют его движением, анализируя адреса назначения каждого пакета. Коммутатор знает, какие устройства соединены с его портами, и направляет пакеты только на необходимые порты. Это дает возможность одновременно работать с несколькими портами, расширяя тем самым полосу пропускания.

    Таким образом, коммутация уменьшает количество лишнего трафика, что происходит в тех случаях, когда одна и та же информация передается всем портам,

    Коммутаторы и концентраторы часто используются в одной и той же сети; концентраторы расширяют сеть, увеличивая число портов, а коммутаторы разбивают сеть на небольшие, менее перегруженные сегменты. Однако применение коммутатора оправдано лишь в крупных сетях, т. к, его стоимость на порядок выше стоимости концентратора.

    Коммутатор следует использовать в случае построения сетей, число рабочих станций в которой составляет более 50, к которому можно отнести и наш случай, вследствие чего выбираем коммутаторы D-Link DES-1024D/E, 24-port Switch 10/100Mbps.
    3.2 Сетевое оборудование
    Выбор типа кабеля.

    Сегодня подавляющее большинство компьютерных сетей в качестве среды передачи использует провода или кабели. Существуют различные типы кабелей, которые удовлетворяют потребностям всевозможных сете от больших до малых.

    В большинстве сетей применяется только три основные группы кабелей:

    • коаксиальный кабель (coaxial cable);

    • витая пара (twisted pair):

    * неэкранированная (unshielded); о * экранированная (shielded);

    - оптоволоконный кабель, одномодовый, многомодовый (fiber
    optic).

    На сегодня самый распространенный тип кабеля и наиболее подходящий по своим характеристикам - это витая пара. Остановимся на ней более подробно.

    Витой парой называется кабель, в котором изолированная пара проводников скручена с небольшим числом витков на единицу длины. Скручивание проводов уменьшает электрические помехи извне при распространении сигналов по кабелю, а экранированные витые пары еще более увеличивают степень помехозащищенности сигналов.

    Кабель типа «витая пара» используется во многих сетевых технологиях, включая Ethernet, ARCNet и IBM Token Ring.

    Кабели на витой паре подразделяются на: неэкранированные (UTP -Unshielded Twisted Pair) и экранированные медные кабели. Последние подразделяются на две разновидности: с экранированием каждой пары и общим экраном (STP - Shielded Twisted Pair) и с одним только общим экраном (FTP - Foiled Twisted Pair). Наличие или отсутствие экрана у кабеля вовсе не означает наличия или отсутствия защиты передаваемых данных, а говорит лишь о различных подходах к подавлению помех. Отсутствие экрана делает неэкранированные кабели более гибкими и устойчивыми к изломам. Кроме того, они не требуют дорогостоящего контура заземления для эксплуатации в нормальном режиме, как экранированные. Неэкранированные кабели идеально подходят для прокладки в помещениях внутри офисов, а экранированные лучше использовать для установки в местах с особыми условиями эксплуатации, например, рядом с очень сильными источниками электромагнитных излучений, которых в офисах обычно нет.

    Вследствие того, что выбрана технология Fast Ethernet 100Base-T, и звездообразная топология предлагается выбрать кабель категории 5 неэкранированная витая пара (UTP).

    Выбор разъемов.

    Для соединения рабочих станций и коммутатора выбираются разъемы RJ-45, 8-контактные розетки, кабель которых обжимается специальным образом.

    Модем.

    Когда компьютер используется для обмена информацией по телефонной
    сети, необходимо устройство, которое может принять сигнал из телефонной
    сети и преобразовать его в цифровую информацию. Это устройство
    называется модем (модулятор-демодулятор). Назначение модема заключается в замене сигнала, поступающего из компьютера ( сочетание нулей и единиц ), электрическим сигналом с частотой, соответствующей рабочему диапазону телефонной линии.

    Модемы бывают внутренние и внешние. Внутренние модемы выполнены в виде платы расширения, вставляемый в специальный слот расширения на материнской плате компьютера. Внешний модем, в отличие от внутреннего, выполнен в виде отдельного устройства, т.е. в отдельном корпусе и со своим блоком питания, когда внутренний модем получает электричество от блока питания компьютера.

    Внутренний модем Достоинства

    1. Все внутренние модели без исключения (в отличие от внешних) имеют встроенное FIFO. (First Input First Output - первым пришел, первым принят). FIFO - это микросхема, обеспечивающая буферизацию данных. Обычный модем при прохождении байта данных через порт каждый раз запрашивает прерывания у компьютера. Компьютер по специальным IRQ-линиям прерывает на некоторое время работу модема, а потом опять возобновляет её. Это замедляет работу компьютера в целом. FIFO же позволяет использовать прерывания в несколько раз реже. Это имеет большое значение при работе в многозадачных средах. Таких как Windows95, OS/2, Windows NT, UNIX и других.

    2. При использовании внутреннего модема уменьшается количество проводов, натянутых в самых неожиданных местах. Так же внутренний модем не занимает на рабочем столе.

    3. Внутренние модемы являются последовательным портом компьютера и не занимают существующих портов компьютера.

    4. Внутренние модели модемов всегда дешевле внешних.
    Недостатки

    1. Занимают слот расширения на материнской плате компьютера. Это очень неудобно на мультимедийных машинах, на которых установлено большое количество дополнительных плат, а также на компьютерах, которые работают серверами в сетях.

    2. Нет индикаторных лампочек, которые при имении определённого навыка позволяют следить за процессами, происходящими в модеме.

    3. Если модем завис, то восстановить работоспособность можно восстановить только клавишей перезагрузки компьютера "RESET".

    Внешние модемы Достоинства

    1. Они не занимают слот расширения, и при необходимости их можно легко отключить и перенести на другой компьютер.

    2. На передней панели есть индикаторы, которые помогают понять, какую операцию сейчас производит модем.

    3. При зависании модема не нужно перезагружать компьютер, достаточно выключить и включить питание модема.

    Недостатки

    1. Необходима мультикарта со встроенным FIFO. Без FIFO модем конечно будет работать, но при этом будет падать скорость передачи данных.

    2. Внешний модем занимает на рабочем столе и ему требуются дополнительные провода для подключения. Это тоже создает некоторое неудобство.

    3. Он занимает последовательный порт компьютера.

    4. Внешний модем всегда дороже аналогичного внутреннего, т.к. включает корпус с индикаторными лампочками и блок питания.

    Для нашей сети выберем внутренний модем ZyXEL Omni 56K. V.90 (PCTel) int PCI.
    3.3 Планировка помещений
    На всех схемах присутствуют условные обозначения:

    - СВ – сервер.

    - РС – рабочая станция.

    - К – коммутатор.


    Рис. 1 Схема сети на первом этаже



    Рис. 2 Схема сети на втором этаже



    Рис. 3 Схема сети на 3 этаже
    3.4 Расчет количества кабеля
    Расчет общей длины кабеля по этажам, необходимого для построения локальной сети, приведен в таблицах 1,2,3. Кабель прокладывается вдоль стен в специальных коробках.

    Таблица 1. Длина кабеля на 1 этаже.

    Имя рабочей станции

    Длина кабеля от РС до К


    РС 1

    10

    РС 2

    11

    РС З

    12

    РС 4

    10

    РС 5

    9

    РС 6

    14

    Длинна кабеля между коммутаторами:

    К1-К2 16 метров

    К1-К3 14 метров

    Общая длина кабеля на первом этаже составляет 96 метров.

    Таблица 2. Длина кабеля на 2 этаже

    Рабочая станция

    Длина кабеля

    От РС до К

    РС 7

    7

    РС 8

    8

    РС 9

    9

    РС 10

    10

    РС 11

    9

    РС 12

    10

    РС 13

    13

    РС 14

    14

    PC 15

    10

    РС 16

    11

    РС 17

    13

    РС 18

    13

    РС 19

    11

    Длинна кабеля между коммутаторами:

    К4К5 17 метров

    Длинна кабеля от сервера до К 4 – 1 метр

    Общая длина кабеля на втором этаже составляет 156 метра.
    Таблица 3. Длина кабеля на 3 этаже

    Рабочая станция

    Длина кабеля от РС до К


    РС 20

    10

    РС 21

    10

    РС 22

    5

    РС 23

    7

    РС 24

    7

    РС 25

    8

    РС 26

    9

    РС 27

    10

    РС 28

    11

    РС 29

    10

    РС 30

    13

    РС 31

    14

    РС 32

    10

    РС 33

    11

    РС 34

    12

    РС 35

    14

    РС 36

    14

    РС 37

    11

    РС 38

    12

    Длинна кабеля между коммутаторами:

    К7К6 17 метров

    К7К8 15 метров

    Общая длина кабеля в сегменте С составляет 230 метра.

    Длинна кабеля между этажами по 2 метра

    Суммарная длина кабеля всей локальной сети с учетом коэффициента запаса составляет (96+156+230+2+2)* 1,2=583, 2 м.

    4. Инструкция по монтажу сети
    В начале развития локальных сетей коаксиальный кабель как среда передачи был наиболее распространен. Он использовался и используется преимущественно в сетях Ethernet и отчасти ARCnet. Различают "толстый" и "тонкий" кабели.

    "Толстый Ethernet", как правило, используется следующим образом. Он прокладывается по периметру помещения или здания, и на его концах устанавливаются 50-омные терминаторы. Из-за своей толщины и жесткости кабель не может подключаться непосредственно к сетевой плате. Поэтому на кабель в нужных местах устанавливаются "вампиры" - специальные устройства, прокалывающие оболочку кабеля и подсоединяющиеся к его оплетке и центральной жиле. "Вампир" настолько прочно сидит на кабеле, что после установки его невозможно снять без специального инструмента. К "вампиру", в свою очередь, подключается трансивер - устройство, согласовывающее сетевую плату и кабель. И, наконец, к трансиверу подключается гибкий кабель с 15-контактными разъемами на обоих концах - вторым концом он подсоединяется к разъему AUI (attachment unit interface) на сетевой плате.

    Все эти сложности были оправданы только одним - допустимая максимальная длина "толстого" коаксиального кабеля составляет 500 метров. Соответственно одним таким кабелем можно обслужить гораздо большую площадь, чем "тонким" кабелем, максимально допустимая длина которого составляет, как известно, 185 метров. При наличии некоторого воображения можно представить себе, что "толстый" коаксиальный кабель - это распределенный в пространстве Ethernet-концентратор, только полностью пассивный и не требующий питания. Других преимуществ у него нет, недостатков же хоть отбавляй - прежде всего высокая стоимость самого кабеля (порядка 2,5 долл. за метр), необходимость использования специальных устройств для монтажа (25-30 долл. за штуку), неудобство прокладки и т.п. Это постепенно привело к тому, что "толстый Ethernet" медленно, но верно сошел со сцены, и в настоящее время мало где применяется.

    "Тонкий Ethernet" распространен значительно шире, чем его "толстый" собрат. Принцип использования у него тот же, но благодаря гибкости кабеля он может присоединяться непосредственно к сетевой плате. Для подключения кабеля используются разъемы BNC (bayonet nut connector), устанавливаемые собственно на кабель, и T-коннекторы, служащие для отвода сигнала от кабеля в сетевую плату. Разъемы типа BNC бывают обжимные и разборные (пример разборного разъема - отечественный разъем СР-50-74Ф).

    Т-коннектор

    Для монтажа разъема на кабель вам потребуется либо специальный инструмент для обжимки, либо паяльник и плоскогубцы.

    Кабель необходимо подготовить следующим образом:

    1. Аккуратно отрежьте так, чтобы его торец был ровным. Наденьте на кабель металлическую муфту (отрезок трубки), который поставляется в комплекте с BNC-разъемом.

    2. Снимите с кабеля внешнюю пластиковую оболочку на длину примерно 20 мм. Будьте аккуратны, чтобы не повредить по возможности ни один проводник оплетки.

    3. Оплетку аккуратно расплетите и разведите в стороны. Снимите изоляцию с центрального проводника на длину примерно 5 мм.

    4. Установите центральный проводник в штырек, который также поставляется в комплекте с разъемом BNC. Используя специальный инструмент, надежно обожмите штырек, фиксируя в нем проводник, либо впаяйте проводник в штырек. При пайке будьте особенно аккуратны и внимательны - плохая пайка через некоторое время станет причиной отказов в работе сети, причем локализовать это место будет достаточно трудно.

    5. Вставьте центральный проводник с установленным на него штырьком в тело разъема до щелчка. Щелчок означает, что штырек сел на свое место в разъеме и зафиксировался там.

    6. Равномерно распределите проводники оплетки по поверхности разъема, если необходимо, обрежьте их до нужной длины. Надвиньте на разъем металлическую муфту.

    7. Специальным инструментом (или плоскогубцами) аккуратно обожмите муфту до обеспечения надежного контакта оплетки с разъемом. Не обжимайте слишком сильно - можно повредить разъем или пережать изоляцию центрального проводника. Последнее может привести к неустойчивой работе всей сети. Но и обжимать слишком слабо тоже нельзя - плохой контакт оплетки кабеля с разъемом также приведет к отказам в работе.

    Отмечу, что отечественный разъем СР-50 монтируется примерно так же, за исключением того, что оплетка в нем заделывается в специальную разрезную втулку и закрепляется гайкой. В некоторых случаях это может оказаться даже удобнее.

    Кабели на основе витой пары

    Витая пара (UTP/STP, unshielded/shielded twisted pair) в настоящее время является наиболее распространенной средой передачи сигналов в локальных сетях. Кабели UTP/STP используются в сетях Ethernet, Token Ring и ARCnet. Они различаются по категориям (в зависимости от полосы пропускания) и типу проводников (гибкие или одножильные). В кабеле 5-й категории, как правило, находится восемь проводников, перевитых попарно (то есть четыре пары).

    Кабель UTP

    Структурированная кабельная система, построенная на основе витой пары 5-й категории, имеет очень большую гибкость в использовании. Ее идея заключается в следующем.

    На каждое рабочее место устанавливается не менее двух (рекомендуется три) четырехпарных розеток RJ-45. Каждая из них отдельным кабелем 5-й категории соединяется с кроссом или патч-панелью, установленной в специальном помещении, - серверной. В это помещение заводятся кабели со всех рабочих мест, а также городские телефонные вводы, выделенные линии для подключения к глобальным сетям и т.п. В помещении, естественно, монтируются серверы, а также офисная АТС, системы сигнализации и прочее коммуникационное оборудование.

    Благодаря тому что кабели со всех рабочих мест сведены на общую панель, любую розетку можно использовать как для подключения рабочего места к ЛВС, так и для телефонии или вообще чего угодно. Допустим, две розетки на рабочем месте были подключены к компьютеру и принтеру, а третья - к телефонной станции. В процессе работы появилась необходимость убрать принтер с рабочего места и установить вместо него второй телефон. Нет ничего проще - патч-корд соответствующей розетки отключается от концентратора и переключается на телефонный кросс, что займет у администратора сети никак не больше нескольких минут.

    Розетка на 2 порта

    Патч-панель, или панель соединений, представляет собой группу розеток RJ-45, смонтированных на пластине шириной 19 дюймов. Это стандартный размер для универсальных коммуникационных шкафов - рэков (rack), в которых устанавливается оборудование (концентраторы, серверы, источники бесперебойного питания и т.п.). На обратной стороне панели смонтированы соединители, в которые монтируются кабели.

    Кросс в отличие от патч-панели розеток не имеет. Вместо них он несет на себе специальные соединительные модули. В данном случае его преимущество перед патч-панелью в том, что при его использовании в телефонии вводы можно соединять между собой не специальными патч-кордами, а обычными проводами. Кроме того, кросс можно монтировать прямо на стену - наличия коммуникационного шкафа он не требует. В самом деле, нет смысла приобретать дорогостоящий коммуникационный шкаф, если вся ваша сеть состоит из одного-двух десятков компьютеров и сервера.

    Кабели с многожильными гибкими проводниками используются в качестве патч-кордов, то есть соединительных кабелей между розеткой и сетевой платой, либо между розетками на панели соединений или кроссе. Кабели с одножильными проводниками - для прокладки собственно кабельной системы. Монтаж разъемов и розеток на эти кабели совершенно идентичен, но обычно кабели с одножильными проводниками монтируются на розетки рабочих мест пользователей, панели соединений и кроссы, а разъемы устанавливают на гибкие соединительные кабели.

    Патч-панель

    Как правило, применяются следующие виды разъемов:

    • S110 - общее название разъемов для подключения кабеля к универсальному кроссу "110" или коммутации между вводами на кроссе;

    • RJ-11 и RJ-12 - разъемы с шестью контактами. Первые обычно применяются в телефонии общего назначения - вы можете встретить такой разъем на шнурах импортных телефонных аппаратов. Второй обычно используется в телефонных аппаратах, предназначенных для работы с офисными мини-АТС, а также для подключения кабеля к сетевым платам ARCnet;

    • RJ-45 - восьмиконтактный разъем, использующийся обычно для подключения кабеля к сетевым платам Ethernet либо для коммутации на панели соединений.

    Разъем RJ-45

    В зависимости от того, что с чем нужно коммутировать, применяются различные патч-корды: "45-45" (с каждой стороны по разъему RJ-45), "110-45" (с одной стороны S110, с другой - RJ-45) или "110-110".

    Для монтажа разъемов RJ-11, RJ-12 и RJ-45 используются специальные обжимочные приспособления, различающиеся между собой количеством ножей (6 или 8) и размерами гнезда для фиксации разъема. В качестве примера рассмотрим монтаж кабеля 5-й категории на разъем RJ-45.

    1. Аккуратно обрежьте конец кабеля. Торец кабеля должен быть ровным.

    2. Используя специальный инструмент, снимите с кабеля внешнюю изоляцию на длину примерно 30 мм и обрежьте нить, вмонтированную в кабель (нить предназначена для удобства снятия изоляции с кабеля на большую длину). Любые повреждения (надрезы) изоляции проводников абсолютно недопустимы - именно поэтому желательно использовать специальный инструмент, лезвие резака которого выступает ровно на толщину внешней изоляции.

    3. Аккуратно разведите, расплетите и выровняйте проводники. Выровняйте их в один ряд, при этом соблюдая цветовую маркировку. Существует два наиболее распространенных стандарта по разводке цветов по парам: T568A (рекомендуемый компанией Siemon) и T568B (рекомендуемый компанией ATT и фактически наиболее часто применяемый).

    На разъеме RJ-45 цвета проводников располагаются так:

    Проводники должны располагаться строго в один ряд, без нахлестов друг на друга. Удерживая их одной рукой, другой ровно обрежьте проводники так, чтобы они выступали над внешней обмоткой на 8-10 мм.

    4. Держа разъем защелкой вниз, вставьте в него кабель. Каждый проводник должен попасть на свое место в разъеме и упереться в ограничитель. Прежде чем обжимать разъем, убедитесь, что вы не ошиблись в разводке проводников. При неправильной разводке помимо отсутствия соответствия номерам контактов на концах кабеля, легко выявляемого с помощью простейшего тестера, возможна более неприятная вещь - появление "разбитых пар" (splitted pairs).

    Для выявления этого брака обычного тестера недостаточно, так как электрический контакт между соответствующими контактами на концах кабеля обеспечивается и с виду все как будто бы нормально. Но такой кабель никогда не сможет обеспечить нормальное качество соединения даже в 10-мегабитной сети на расстояние более 40-50 метров. Поэтому нужно быть внимательным и не торопиться, особенно если у вас нет достаточного опыта.

    5. Вставьте разъем в гнездо на обжимочном приспособлении и обожмите его до упора-ограничителя на приспособлении. В результате фиксатор на разъеме встанет на свое место, удерживая кабель в разъеме неподвижным. Контактные ножи разъема врежутся каждый в свой проводник, обеспечивая надежный контакт.

    Аналогичным образом можно осуществить монтаж разъемов RJ-11 и RJ-12, используя соответствующий инструмент.

    Для монтажа разъема S110 специального обжимочного инструмента не требуется. Сам разъем поставляется в разобранном виде. Кстати, в отличие от "одноразовых" разъемов типа RJ разъем S110 допускает многократную разборку и сборку, что очень удобно. Последовательность действий при монтаже следующая:

    1. Снимите внешнюю изоляцию кабеля на длину примерно 40 мм, разведите в стороны пары проводников, не расплетая их.

    2. Закрепите кабель (в той половинке разъема, на которой нет контактной группы) с помощью пластмассовой стяжки и отрежьте получившийся "хвост".

    3. Аккуратно уложите каждый проводник в органайзер на разъеме. Не расплетайте пару на большую, чем требуется, длину - это ухудшит характеристики всего кабельного соединения. Последовательность укладки пар обычная - синяя-оранжевая-зеленая-коричневая; при этом светлый провод каждой пары укладывается первым.

    4. Острым инструментом (бокорезами или ножом) обрежьте каждый проводник по краю разъема.

    5. Установите на место вторую половинку разъема и руками обожмите ее до защелкивания всех фиксаторов. При этом ножи контактной группы врежутся в проводники, обеспечивая контакт.

    Оптоволоконный кабель

    Оптоволоконные кабели - наиболее перспективная и обеспечивающая наибольшее быстродействие среда распространения сигналов для локальных сетей и телефонии. В локальных сетях оптоволоконные кабели используются для работы по протоколам ATM и FDDI.

    Приспособление для снятия изоляции и обжимки разъема

    Оптоволокно, как понятно из его названия, передает сигналы при помощи импульсов светового излучения. В качестве источников света используются полупроводниковые лазеры, а также светодиоды. Оптоволокно подразделяется на одно- и многомодовое.

    Одномодовое волокно очень тонкое, его диаметр составляет порядка 10 микрон. Благодаря этому световой импульс, проходя по волокну, реже отражается от его внутренней поверхности, что обеспечивает меньшее затухание. Соответственно одномодовое волокно обеспечивает большую дальность без применения повторителей. Теоретическая пропускная способность одномодового волокна составляет 10 Гбит/с. Его основные недостатки - высокая стоимость и высокая сложность монтажа. Одномодовое волокно применяется в основном в телефонии.

    Многомодовое волокно имеет больший диаметр - 50 или 62,5 микрона. Этот тип оптоволокна чаще всего применяется в компьютерных сетях. Большее затухание во многомодовом волокне объясняется более высокой дисперсией света в нем, из-за которой его пропускная способность существенно ниже - теоретически она составляет 2,5 Гбит/с.

    Для соединения оптического кабеля с активным оборудованием применяются специальные разъемы. Наиболее распространены разъемы типа SC и ST.

    Монтаж соединителей на оптоволоконный кабель - очень ответственная операция, требующая опыта и специального обучения, поэтому не стоит заниматься этим в домашних условиях, не будучи специалистом. 


    5. Расчет стоимости оборудования
    Стоимость компонентов показана в таблице 4 (по данным интернет магазина «М-видео» в г. Балаково).

    Таблица 4 стоимость оборудования

    Наименование

    Стоимость

    Конфигурация сервера

    40704,00 р.

    Коммутаторы

    8040,00 р.

    Кабель UTP 5 level

    8788,50 р.

    RJ-45 коннекторы

    570,00 р.

    Сетевые карты TrendNet

    8437,00 р.

    Всего

    66 539 р.

    Из таблицы видно, что затраты на проектирование сети не превышают разумных пределов.

    6. Перспективы развития сети
    ЛВС представленная в данной работе может развиваться и расширяться. На данном этапе для улучшения локальной сети могут быть предприняты следующие меры:

    - подключение дополнительного сетевого сегмента на втором и третьем этажах;

    - подключение дополнительных рабочих станций на любом участке сети;

    - установка управляемых коммутаторов в наиболее нагруженные сегменты сети (непосредственно в компьютерные классы);

    - разгрузка наиболее нагруженных сегментов сети путем разбиения ее на ветви;

    - обновление программного обеспечения для повышения качества сети.

    Заключение
    В ходе работы была разработана локальная вычислительная сеть, состоящая из 38 рабочих станций и 1 сервера на основе технологии Fast Ethernet, самого распространенного типа сети в настоящее время, к достоинствам которого можно отнести простоту настройки, дешевизну компонентов. Звездообразная топология, используемая в проекте, обеспечивает возможность централизованного управления сетью, обеспечивает простоту поиска вышедшего из строя узла. Сеть построена с учетом будущего развития. В качестве операционной системы сервера выбрана Windows Server 2003 R2. Рассчитано необходимое количество сетевого оборудования, его цена приведены данные и расчеты используемого оборудования, затраты на построение составляют 66 539 руб. Составлен подробный план сети, где указаны все характеристики используемых компонентов. Задачи, заданные на проектирование, в целом выполнены. Работа имеет все необходимые данные и расчеты для построения сети.

    Список литературы
    1. Актерский, Ю.Е. Сети ЭВМ и телекоммуникации: учебное пособие Ю.Е. Актерский. - СПб.: ПВИРЭ КВ, 2005. - 223 с.

    2. Арчибальд, Р.Д. Управление высокотехнологичными программами и проектами / - М.: ДМК Пресс, 2010. - 464 с.

    3. Балафанов, Е.К. Новые информационные технологии. 30 уроков информатики / Е.К. Балафанов, Б.Б. Бурибаев, А.Б. Даулеткулов. - Алма-Ата.: Патриот, 2004. - 220 с.

    4. Брезгунова, И.В. Аппаратные и программные средства персонального компьютера. Операционная система Microsoft Windows XP / - М: РИВШ, 2011. - 164 с.

    5. Брябрин В.М. Программное обеспечение персональных ЭВМ. - М.: Наука, 1990. 22 с.

    6. Велихов А.В., Строчников К.С., Леонтьев Б.К. Компьютерные сети: Учебное пособие по администрированию локальных и объединенных сетей / - М: Познавательная книга-Пресс, 2004 - 320 с.

    8. Воройский, Ф.С. Информатика. Новый систематизированный толковый словарь-справочник (Введение в современные информационные и телекоммуникационные технологии в терминах и фактах) / Ф.С. Воройский -- 3-е изд., перераб. и доп. -- М.: ФИЗМАТЛИТ, 2003. -- 760 с

    9. Гиляревский, Р.С. Информационный менеджмент. Управление информацией, знаниями, технологией - М.: Профессия, 2009. - 304 с.

    10. Граничин, О.Н. Информационные технологии в управлении / - М.: Бином, 2011. - 336 с.

    11. Гук М. Аппаратные средства локальных сетей. Энциклопедия - СПб.: Питер, 2000. -576с.

    12. Додд, А.З. Мир телекоммуникаций. Обзор технологий и отрасли / А.З. Додд. - М.:Олимп-Бизнес, 2005. - 400 с.

    13. Дэн Холме, Нельсон Рест, Даниэль Рест. Настройка Active Directory. Windows Server 2008. Учебный курс Microsoft / - М: Русская редакция, 2011 - 960 с.

    14. Журин А. Самоучитель работы на компьютере. MS Windows XP. Office XP/ А. Журин. - М.: Корона - Принт, 2009. - 370 с.

    15. Заика, А. Компьютерные сети / А. Заика, М.: Олма-Пресс, 2006. - 448 с.

    16. Закер Крэйг. Планирование и поддержка сетевой инфраструктуры Microsoft Windows Server 2003 /- М: Русская редакция, 2005 - 544 с.

    17. Кангин, В.В. Аппаратные и программные средства систем управления / - М.: Бином. Лаборатория знаний, 2010. - 424 с.



    написать администратору сайта