Альтернативная биохимия. Интернетмарафон Узнай современное искусство 1 августа 30 сентября 2019
Скачать 221.81 Kb.
|
Кремнезём в морской и пресной воде В воде кремнезём присутствует в виде кремниевой кислоты: {\displaystyle {\ce {{SiO2}+ 2{H2O}-> {Si(OH)4}}}}, либо {\displaystyle {\ce {{SiO2}+ {H2O}-> {H2SiO3}}}} При увеличении концентрации раствора при pH менее 9 или при уменьшении pH насыщенного раствора, кремниевая кислота выпадает в осадок в виде аморфного кремнезёма. Хотя кремний — один из наиболее распространённых элементов земной коры, его доступность для диатомей ограничена растворимостью. Среднее содержание кремния в морской воде — около 6ppm. Морские диатомовые быстро исчерпывают запасы растворённого кремнезёма в поверхностном слое воды, и это ограничивает их дальнейшее размножение. Следует отметить, что соединения кремния (в частности, диоксид кремния) используются некоторыми организмами на Земле. Из них свой панцирь формируют диатомовые водоросли, получая кремний из воды. В качестве структурного материала соединения кремния также используются радиолярией, некоторыми губками и растениями, они входят также в состав соединительной ткани человека. 25 ноября 2016 года в журнале Science, исследователи сообщили[11], что открыты белки, обычно содержащиеся в бактериях исландских горячих источников, которые могут образовывать молекулы с углерод-кремниевыми связями в живых клетках . «То, что существует в природе, уже готово для создания этой совершенно новой химии и делает это относительно хорошо», — говорит соавтор Фрэнсис Арнольд, инженер-химик из Калифорнийского технологического института в Пасадене. "Это открывает путь к созданию соединений, которые природа никогда не делала раньше. Вскоре мы сможем узнать, какие затраты и выгоды они дают живым биосистемам ". «Это ни в коем случае не идентичная замена», — говорит Арнольд. "Жизнь в нормальных условиях на этой планете, вероятно, не будет работать с кремнием. Предположительно, мы могли бы создать компоненты жизни, включающие кремний — возможно, кремниевый жир или кремнийсодержащие белки — и спросить, как жизнь с этим связана?…Обеспечивает ли это новые функции, которых раньше не было в жизни? " Азот и фосфор[править | править код] Азот и фосфор считают другими претендентами на роль основы для биологических молекул. Как и углерод, фосфор может составлять цепочки из атомов, которые в принципе могли бы образовывать сложные макромолекулы, если бы он не был таким активным. Однако в комплексе с азотом возможно образование более сложных ковалентных связей, что делает возможным возникновение большого разнообразия молекул, включая кольцевые структуры. В атмосфере Земли азота около 78 %, однако в силу инертности двухатомного азота энергетическая «цена» образования трёхвалентной связи слишком высока. В то же время некоторые растения могут связывать азот из почвы в симбиозе с анаэробными бактериями, живущими в их корневой системе. В случае присутствия в атмосфере значительного количества диоксида азота или аммиака доступность азота будет выше. В атмосфере других планет, кроме того, могут существовать и другие оксиды азота. Подобно растениям на Земле (например, бобовым), инопланетные формы жизни могли бы усваивать азот из атмосферы. В таком случае мог бы сформироваться процесс наподобие фотосинтеза, когда энергия ближайшей звезды тратилась бы на образование аналогов глюкозы с выделением кислорода в атмосферу. В свою очередь, животная жизнь, стоящая выше растений в пищевой цепочке, усваивала бы из них питательные вещества, выделяя диоксид азота в атмосферу и соединения фосфора в почву. В аммиачной атмосфере растения с молекулами на основе фосфора и азота получали бы соединения азота из окружающей их атмосферы, а фосфор — из почвы. В их клетках происходило бы окисление аммиака для образования аналогов моносахаридов, водород бы выделялся в качестве побочного продукта. В данном случае животные будут вдыхать водород, расщепляя аналоги полисахаридов до аммиака и фосфора, то есть энергетические цепочки формировались бы в обратном направлении по сравнению с существующими на нашей планете (у нас вместо аммиака в данном случае распространён бы был метан). Споры на эту тему далеко не окончены, так как некоторые этапы цикла на основе фосфора и азота являются энергодефицитными. Также представляется спорным, что во Вселенной соотношения этих элементов встречаются в необходимой для возникновения жизни пропорции. Азот и бор[править | править код] Атомы азота и бора, находящиеся в «связке», в определённой степени имитируют связь «углерод—углерод». Так, известен боразол {\displaystyle \mathrm {B_{3}N_{3}H_{6}} }, который иногда называют «неорганическим бензолом» (правильнее его было бы наречь «неуглеродным бензолом»). Но всё же на основе комбинации бора с азотом невозможно создать всё то разнообразие химических реакций и соединений, известных в химии углерода. Тем не менее, принципиальную возможность такой замены в виде каких-то отдельных фрагментов искусственных (или инопланетных) биомолекул нельзя полностью исключать. Замена фосфора[править | править код] Основная статья: Жизнь на основе мышьяка В декабре 2010 года исследователь из НАСА Astrobiology Research Фелиса Вольфе-Симон (англ. FelisaWolfe-Simon) сообщила об открытии бактерии GFAJ-1 из рода Halomonadaceae, способной при определённых условиях заменять фосфор мышьяком[12][13][14]. Мышьяк, который химически похож на фосфор, хотя и является ядовитым для большинства форм жизни на Земле, включен в биохимию некоторых организмов. Некоторые морские водоросли включают мышьяк в сложные органические молекулы, такие как арсеносахары и арсенобетаины . Грибы и бактерии могут производить летучие соединения метилированного мышьяка. Уменьшение арсената и окисление арсенита наблюдались у микробов (Chrysiogenes arsenatis). Кроме того, некоторые прокариоты могут использовать арсенат в качестве концевого акцептора электронов во время анаэробного роста, а некоторые могут использовать арсенит в качестве донора электронов для генерации энергии. Было высказано предположение, что самые ранние формы жизни на Земле могли использовать биохимию мышьяка вместо фосфора в структуре их ДНК. Общее возражение против этого сценария состоит в том, что сложные эфиры арсената настолько менее устойчивы к гидролизу, чем соответствующие сложные эфиры фосфата, что мышьяк просто не подходит для этой функции. Авторы геомикробиологического исследования 2010 года, частично поддержанного НАСА, предположили, что бактерия, названная GFAJ-1 , собранная в отложениях озера Моно в восточной Калифорнии, может использовать такую "мышьяковую ДНК" при культивировании без фосфора. Они предположили, что бактерия может использовать высокие уровни поли-β-гидроксибутирата или других средств для снижения эффективной концентрации воды и стабилизации сложных эфиров арсената. Эта гипотеза была подвергнута резкой критике почти сразу после публикации за предполагаемое отсутствие соответствующих мер контроля зa экспериментами. Научный писатель Карл Зиммер связался с несколькими учеными для оценки: «Я обратился к дюжине экспертов … Почти единодушно, они думают, что ученые НАСА не смогли обосновать свое мнение». Другие авторы не смогли воспроизвести свои результаты и показали, что в исследовании были проблемы с загрязнением фосфатом, что позволяет предположить, что присутствующие низкие количества могут поддерживать экстремофильные формы жизни. В качестве альтернативы было высказано предположение, что клетки GFAJ-1 растут путем рециркуляции фосфата из деградированных рибосом, а не путем замены его на арсенат. Pезультаты последующих экспериментаторов опровергли теорию о включении мышьяка в состав ДНК[15][16]. Почётный член Фонда прикладной молекулярной эволюции (США) Стивен Беннер (Steven Benner), отметил в своём выступлении на пресс-конференции в штаб-квартире НАСА, что хотя мышьяк своей химией напоминает фосфор, но всё-таки он, будучи встроен в структуру ДНК и РНК, является «слабым звеном», так как формируемые им химические связи легко ломаются из-за высокой реакционной способности атома мышьяка. В то же самое время повышенная реакционная способность мышьяка, негативно влияющая на стабильность биологических молекул при комнатной температуре, может оказаться полезной в том случае, если биологическая молекула должна выполнять свои функции при низких температурах, таких, например, как на спутнике Сатурна Титане. Теории о возможности жизни на Титане были выдвинуты в 2005 году на основании недавно полученных наблюдений, однако Титан значительно холоднее, чем Земля, поэтому на его поверхности нет жидкой воды. Однако с другой стороны на Титане имеются озёра жидкого метана и этана, а также реки и целые моря из них, кроме того, они могут выпадать в виде осадков, как дождь из воды на Земле. Некоторые научные модели показывают, что Титан может поддерживать жизнь не на водной основе (см.), хотя не все учёные согласны с этими теориями, так как они всё ещё являются предметом широких дискуссий и дебатов в научном сообществе, в том числе и в NASA[17][18][19]. Замена воды[править | править код] Авторское представление о планете, на которой аммиак выполняет функцию воды В дополнение к соединениям углерода, для всей известной в настоящее время земной жизни также требуется вода в качестве растворителя. Различные свойства воды, которые важны для процессов жизнедеятельности, включают широкий диапазон температур, при которых она является жидкой, высокую теплоемкость, способствующую регуляризации температуры, большую теплоту испарения и способность растворять широкий спектр соединений. Вода также амфотерна, что означает, что она может давать или принимать протон, позволяя ей действовать как кислота или основание. Это свойство имеет решающее значение во многих органических и биохимических реакциях, где вода служит растворителем, реагентом или продуктом. Существуют и другие химические вещества со схожими свойствами, которые иногда предлагались в качестве альтернативы воде. Вода является жидкой при давлении в 1 атм. в интервале от 0 °C до 100 °C, но существуют другие растворители, например, серная кислота, которые остаются в жидком состоянии до температуры в 200 °C и более[20]. Аммиак[править | править код] Аммиак часто рассматривается в качестве наиболее вероятного (после воды) растворителя для возникновения жизни на какой-либо из планет. При давлении в 100 кПа (1 атм.) он находится в жидком состоянии при температурах от −78 до −33 °C. Молекула аммиака (NH 3), как и молекула воды, широко распространена во Вселенной, являясь соединением водорода (самый простой и самый распространенный элемент) с другим очень распространенным элементом, азотом. Возможная роль жидкого аммиака как альтернативного растворителя для жизни — идея, которая восходит по крайней мере к 1954 году, когда Дж. Б. С. Холдейн поднял тему на симпозиуме о происхождении жизни. В растворе аммиака возможны многочисленные химические реакции, а жидкий аммиак имеет химическое сходство с водой. Аммиак может растворять большинство органических молекул, по крайней мере, так же, как вода, и, кроме того, он способен растворять многие элементарные металлы. Холдейн отметил, что различные общие органические соединения, связанные с водой, имеют аналоги, связанные с аммиаком; например, связанная с аммиаком аминогруппа (-NH 2) аналогична связанной с водой гидроксильной группе (-OH). Аммиак, как и вода, может принимать или жертвовать ион H + . Когда аммиак принимает H + , он образует катион аммония (NH 4 +), аналогичный гидронию (H 3 O +). Когда он отдает ион H + , он образует анион амида (NH 2 —), аналогичный аниону гидроксида (OH —). Однако, по сравнению с водой, аммиак более склонен принимать ион Н + и менее склонен отдавать его; это более сильный нуклеофил. Аммиак, добавленный в воду, действует как основание Аррениуса: он увеличивает концентрацию гидроксида аниона. И наоборот, используя систему определения кислотности и основности в системе растворителей, вода, добавляемая к жидкому аммиаку, действует как кислота, поскольку увеличивает концентрацию катиона аммония. Карбонильная группа (C = O), которая широко используется в наземной биохимии, не будет стабильной в растворе аммиака, но вместо нее можно использовать аналогичную иминную группу (C = NH). Тем не менее, аммиак имеет некоторые проблемы в качестве основы для жизни. Водородные связи между молекулами аммиака слабее, чем в воде, что приводит к тому, что теплота испарения аммиака вдвое меньше, чем у воды, а поверхностное натяжение — до трети, а также уменьшается способность концентрировать неполярные молекулы за счет гидрофобного эффекта. Джеральд Файнберг и Роберт Шапиро подвергли сомнению, мог ли аммиак удерживать молекулы пребиотика достаточно хорошо, чтобы позволить появление самовоспроизводящейся системы. Аммиак также воспламеняется в кислороде и не может устойчиво существовать в среде, подходящей для аэробного метаболизма. Жидкий аммиак по ряду свойств напоминает воду, но следует заметить, что при замерзании твёрдый аммиак не всплывает вверх, а тонет (в отличие от водного льда). Поэтому океан, состоящий из жидкого {\displaystyle \mathrm {NH_{3}} }, будет легко промерзать до дна. Кроме того, выбор аммиака в качестве растворителя исключает выгоды от использования кислорода как биологического реагента. Однако это не исключает возможности возникновения альтернативной жизни на планетах, где аммиак имеется в смеси с водой[21]. Биосфера на основе аммиака, вероятно, будет существовать при температурах или давлениях воздуха, которые являются чрезвычайно необычными по отношению к жизни на Земле. Жизнь на Земле обычно существует в пределах температуры плавления и кипения воды при нормальном давлении, между 0 ° C (273 К) и 100 ° C (373 К); при нормальном давлении температура плавления и кипения аммиака составляет от −78 ° C (195 К) до −33 ° C (240 К). Химические реакции обычно протекают медленнее при более низкой температуре. Поэтому жизнь на основе аммиака, если она существует, может метаболизироваться медленнее и развиваться медленнее, чем жизнь на Земле. С другой стороны, более низкие температуры могут также позволить живым системам использовать химические вещества, которые были бы слишком нестабильны при температурах Земли, чтобы быть полезными. Аммиак может быть жидкостью при температурах, подобных Земле, но при гораздо более высоких давлениях; например, при 60 атм аммиак плавится при −77 ° С (196 К) и кипит при 98 ° С (371 К). Смеси аммиака и аммиака и воды остаются жидкими при температурах, намного ниже точки замерзания чистой воды, поэтому такая биохимия могла бы хорошо подходить для планет и лун, вращающихся вне зоны обитаемости на водной основе. Такие условия могут существовать, например, под поверхностью самой большой луны Сатурна Титана. Фтороводород[править | править код] По ряду свойств фтороводород напоминает воду. Так, он тоже способен к образованию межмолекулярных водородных связей. Однако стоит учитывать, что на 1 атом фтора в наблюдаемой вселенной приходится 10000 атомов кислорода, поэтому трудно представить на какой-либо планете условия, которые благоприятствовали бы образованию океана, состоящего из {\displaystyle \mathrm {HF} }, а не из {\displaystyle \mathrm {H_{2}O} }. Другой серьёзный аргумент против такой возможности заключается в том, что твёрдая поверхность большинства планет (которые её имеют), за исключением некоторых экзотических гипотетических планет (железная планета, углеродная планета), состоит из диоксида кремния и алюмосиликатов, с которыми фтороводород реагирует по реакции: {\displaystyle \mathrm {SiO_{2}+6HF\rightarrow } } {\displaystyle \mathrm {H_{2}SiF_{6}} } {\displaystyle \mathrm {+2H_{2}O} }. Цианистый водород[править | править код] Синильная кислота {\displaystyle \mathrm {HCN} } также способна к образованию водородных связей, но в отличие от {\displaystyle \mathrm {HF} }она состоит из широко распространённых во Вселенной элементов. Более того, считается, что это соединение играло значительную роль в предбиологической химии Земли — например, в образовании аминокислот, нуклеотидов и других компонентов «первичного бульона». Тем не менее, цианистый водород не подходит в качестве возможного растворителя для альтернативной жизни хотя бы потому, что это соединение термодинамически неустойчиво. Так, жидкий цианистый водород довольно быстро осмоляется, особенно в присутствии катализаторов (в роли которых могут выступать кислоты, основания, глина и многие горные породы), причём иногда разложение {\displaystyle \mathrm {HCN} } протекает со взрывом. По этим причинам {\displaystyle \mathrm {HCN} } не способен образовать океан на какой-либо планете. Метан и этан[править | править код] Углеводородные озёра на Титане: радиолокационное изображение с Кассини, 2006 год Жизнь может существовать в жидких метане и этане на поверхности Титана, которые имеют форму рек и озёр, так же, как организмы на Земле живут в воде. Такие существа использовали бы H2 вместо O2 и реагировали с ацетиленом вместо глюкозы, и производили бы метан, а не углекислый газ. Существует дискуссия об эффективности метана в качестве растворителя для жизни по сравнению с водой: вода является более мощным растворителем, чем метан, что позволяет ей легче переносить вещество в клетку, но меньшая химическая реактивность метана позволяет ему легче образовывать крупные структуры, например белки и им подобные. Другое предположение состоит в том, что организмы, живущие в среде жидкого метана или этана, могут использовать различные соединения в качестве растворителя. Например, фосфин (PH3) и простые соединения фосфора и водорода. Как вода и аммиак, фосфин имеет полярность, но он существует в виде жидкости при более низких температурах, чем аммиак или вода. В жидком этане фосфин имеет форму отдельных капель, а это означает, что ячейкоподобные структуры могли бы существовать без клеточных мембран. Замена кислорода[править | править код] Интересной особенностью серной кислоты является то, что это вещество становится кислотой только в присутствии воды. Но вода в процессе полимеризации молекул сахаров и аминокислот не будет выделяться, если в органических молекулах на месте атомов кислорода будут находиться атомы серы. Такие «серные» организмы должны существовать при заметно более высокой температуре и в океане из олеума (безводной серной кислоты). Такие условия существуют на Венере. Поскольку молекулярный кислород, который бы мог образовать озоновый слой, защищающий от ультрафиолета, не образуется, то это создаёт сложности для выхода жизни на сушу. Этим можно объяснить то, что жизнь на Венере до сих пор не найдена, хотя есть косвенные свидетельства — наличие в одних и тех же регионах {\displaystyle \mathrm {H_{2}S} } и {\displaystyle \mathrm {SO_{2}} }, которые не могут сосуществовать, если их кто-то или что-то постоянно не производит[22]. По последним данным также был обнаружен тонкий озоновый слой на Венере, который, по словам учёных, образуется из углекислого газа в верхних слоях атмосферы под воздействием солнечного света[23]. Теоретически возможна замена кислорода другими халькогенами, но для существования жизни на их основе эти элементы встречаются крайне редко. «Зеркальный мир»[править | править код] См. также: Ксенобиология В живой природе Земли все аминокислоты имеют L-конфигурацию, а углеводы — D-конфигурацию, за исключением крайне редких случаев, например, элементов оболочки возбудителя сибирской язвы. В принципе можно представить себе «зеркальный мир», в котором живые организмы имеют ту же биохимическую основу, как и на Земле, — за исключением её полной зеркальной симметричности: в таком мире жизнь могла бы быть основана на D-аминокислотах и L-углеводах. Такая возможность не противоречит ни одному из известных на сегодня законов природы. Одним из парадоксов такого гипотетического мира является тот факт, что, попав в такой мир (являющийся зеркальной копией Земли), человек мог бы умереть от голода, несмотря на обилие пищи вокруг[24]:13. Кроме того, употребление в пищу «зеркальных» молекул может вызвать отравление[24]:12—13. Нехимические способы жизни[править | править код] В книге «Evolving the Alien» биолог Джек Коэн (Jack Cohen) и математик Иэн Стюарт (Ian Stewart) утверждают, что астробиология, основанная на гипотезе уникальной Земли, «ограниченна и уныла». Они предположили, что землеподобные планеты могут быть редкими, но сложные формы жизни могут появиться и в других условиях. Ещё более умозрительные идеи касаются возможности жизни на совсем иных телах, нежели землеподобные планеты. Астроном Фрэнк Дрейк, известный сторонник поиска внеземной жизни, предположил жизнь на нейтронных звёздах: существа с жизненным циклом в миллионы раз быстрее, чем у земных организмов, состоящие из сверхмалых «ядерных молекул»[25]. Названная «фантазийной и лукавой», эта идея получила широкое распространение в научной фантастике[26]. Карл Саган в 1976 году рассматривал возможность существования организмов, летающих в верхних слоях атмосферы Юпитера[27][28]. Коэн и Стюарт также рассмотрели возможность жизни в атмосфере газовых гигантов и даже на Солнце. Некоторые философы, например, Циолковский, считали, что жизнь может принимать форму способных к сохранению формы и самовоспроизведению в некоторых условиях плазмоидов, прототипом которых служит шаровая молния. В последнее время благодаря компьютерному моделированию возможность существования плазменных форм жизни получила некоторое теоретическое обоснование[29]. Альтернативная биохимия в фантастических произведениях[править | править код]
|