ege полякова 1. Использование и анализ информационных моделей (таблицы, диаграммы, графики)
Скачать 1.12 Mb.
|
Еще пример задания:Р-01. Таблица стоимости перевозок устроена следующим образом: числа, стоящие на пересечениях строк и столбцов таблиц, означают стоимость проезда между соответствующими соседними станциями. Если пересечение строки и столбца пусто, то станции не являются соседними. Укажите таблицу, для которой выполняется условие: «Минимальная стоимость проезда из А в B не больше 6». Стоимость проезда по маршруту складывается из стоимостей проезда между соответствующими соседними станциями.
Решение (вариант 1): нужно рассматривать все маршруты из А в В, как напрямую, так и через другие станции рассмотрим таблицу 1: из верхней строки таблицы следует, что из А в В напрямую везти нельзя, только через C (стоимость перевозки А-С равна 3) или через D (стоимость перевозки из А в D равна 1)
предположим, что мы повезли через C; тогда из третьей строки видим, что из C можно ехать в В, и стоимость равна 4
таким образом общая стоимость перевозки из А через С в В равна 3 + 4 = 7 кроме того, из С можно ехать не сразу в В, а сначала в Е:
а затем из Е – в В (стоимость также 2),
так что общая стоимость этого маршрута равна 3 + 2 + 2 = 7 теперь предположим, что мы поехали из А в D (стоимость 1); из четвертой строки таблицы видим, что из D можно ехать только обратно в А, поэтому этим путем в В никак не попасть:
таким образом, для первой таблицы минимальная стоимость перевозки между А и В равна 7; заданное условие «не больше 6» не выполняется аналогично рассмотрим вторую схему; возможные маршруты из А в В: , стоимость 7 , стоимость 7 таким образом, минимальная стоимость 7, условие не выполняется для третьей таблицы: , стоимость 7 , стоимость 6 , стоимость 7 таким образом, минимальная стоимость 6, условие выполняется для четвертой: , стоимость 9 , стоимость 8 минимальная стоимость 8, условие не выполняется условие «не больше 6» выполняется только для таблицы 3 таким образом, правильный ответ – 3.
Решение_(вариант_2,_с_рисованием_схемы)'>Решение (вариант 2, с рисованием схемы): для каждой таблицы нарисуем соответствующую ей схему дорог, обозначив стоимость перевозки рядом с линиями, соединяющими соседние станции:
теперь по схемам определяем кратчайшие маршруты для каждой таблицы: 1: или , стоимость 7 2: или , стоимость 7 3: , стоимость 6 4: , стоимость 8 условие «не больше 6» выполняется только для таблицы 3 таким образом, правильный ответ – 3.
Еще пример задания1:Р-00. Между четырьмя местными аэропортами: ВОСТОРГ, ЗАРЯ, ОЗЕРНЫЙ и ГОРКА, ежедневно выполняются авиарейсы. Приведён фрагмент расписания перелётов между ними: Аэропорт вылета Аэропорт прилета Время вылета Время прилета ВОСТОРГ ГОРКА 16:15 18:30 ОЗЕРНЫЙ ЗАРЯ 13:40 15:50 ОЗЕРНЫЙ ВОСТОРГ 14:10 16:20 ГОРКА ОЗЕРНЫЙ 17:05 19:20 ВОСТОРГ ОЗЕРНЫЙ 11:15 13:20 ЗАРЯ ОЗЕРНЫЙ 16:20 18:25 ВОСТОРГ ЗАРЯ 14:00 16:15 ЗАРЯ ГОРКА 16:05 18:15 ГОРКА ЗАРЯ 14:10 16:25 ОЗЕРНЫЙ ГОРКА 18:35 19:50 Путешественник оказался в аэропорту ВОСТОРГ в полночь (0:00). Определите самое раннее время, когда он может попасть в аэропорт ГОРКА. 1) 16:15 2) 18:15 3)18:30 4) 19:50 Решение («обратный ход»): сначала заметим, что есть прямой рейс из аэропорта ВОСТОРГ в ГОРКУ с прибытием в 18:30: ВОСТОРГ ГОРКА 16:15 18:30 посмотрим, сможет ли путешественник оказаться в ГОРКЕ раньше этого времени, если полетит через другой аэропорт, с пересадкой; рассмотрим все остальные рейсы, который прибывают в аэропорт ГОРКА: ЗАРЯ ГОРКА 16:05 18:15 ОЗЕРНЫЙ ГОРКА 18:35 19:50 это значит, что имеет смысл проверить только возможность перелета через аэропорт ЗАРЯ (через ОЗЕРНЫЙ явно не получится раньше, чем прямым рейсом); для этого нужно быть в ЗАРЕ не позже, чем в 16:05 смотрим, какие рейсы прибывают в аэропорт ЗАРЯ раньше, чем в 16:05: ОЗЕРНЫЙ ЗАРЯ 13:40 15:50 дальше проверяем рейсы, который приходят в ОЗЕРНЫЙ раньше, чем в 13:40 ВОСТОРГ ОЗЕРНЫЙ 11:15 13:20 таким образом, мы «пришли» от конечного пункта к начальному, в обратном направлении поэтому оптимальный маршрут и правильный ответ – 2.
1 Крылов С.С., Ушаков Д.М. ЕГЭ 2010. Информатика. Тематическая рабочая тетрадь. — М.: Экзамен, 2010. http://kpolyakov.spb.ru |