Главная страница
Навигация по странице:

  • Преимущества HgCdTe

  • Фоточувствительные элементы инфракрасного спектра на основе твердого раствора HgCdTe. Использование икфотоприемников на основе крт


    Скачать 199.14 Kb.
    НазваниеИспользование икфотоприемников на основе крт
    АнкорФоточувствительные элементы инфракрасного спектра на основе твердого раствора HgCdTe
    Дата12.06.2022
    Размер199.14 Kb.
    Формат файлаdocx
    Имя файлаref_kvantopt1.docx
    ТипДокументы
    #587186

    Введение


    Твердые растворы на основе КРТ доказали на практике свои преимущества, и областей, где их используют, сейчас довольно много. Тепловизионная техника, основанная на применении фотоприемников инфракрасного ИК-диапазона на длины волн 1–30 мкм, используется в различных областях народного хозяйства:

    Использование ИК-фотоприемников на основе КРТ


        • – химическая промышленность;

        • – астрономия;

        • – медицина (ранняя диагностика раковых опухолей и других заболеваний);

    • – геология (поиск нефтегазовый, рудных и нерудных месторождений и геотермальных вод);

    • – городское хозяйство (для обнаружения скрытых утечек тепла, горячей и холодной воды в теплотрассах и водопроводной сети, обнаружение карстовых полостей в районах массовой застройки, обнаружение нарушения изоляции электропроводки);

    • – энергетика (дистанционный контроль предаварийных ситуаций крупных энергетических объектов).

    Преимущества HgCdTe – прямая запрещенная зона, возможность получать как низкую, так и высокую концентрацию носителей заряда, высокую подвижность электронов и низкую диэлектрическую постоянную. Чрезвычайно малое изменение периода кристаллической решетки с изменением состава позволяет выращивать высококачественные многослойные структуры и структуры со ступенчатой шириной запрещенной зоны. HgCdTe может использоваться для детекторов, работающих в различных режимах, а также может быть оптимизирован для использования в диапазоне температур от жидкого гелия до комнатной в чрезвычайно широком диапазоне ИК-спектра (1–30 мкм). Такойширокий диапазон длин волн дает и широкие области применения.

    Фотопроводимость полупроводников


    Увеличение электропроводности полупроводников может быть обусловлено не только тепловым возбуждением носителей тока, но и под действием электромагнитного излучения. В таком случае говорят о фотопроводимости полупроводников. Фотопроводимость полупроводников может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника т. е. когда энергия фотонов равна или больше ширины запрещенной зоны ( ≥ ∆E), могут совершаться перебросы электронов из валентной зоны в зону проводимости (рис. 1, а), что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок (в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная электронами и дырками.



    Рис.1 Схемы фотопроводимости полупроводника:

    а) собственная ф/п;

    б) примесная ф/п, донорная примесь, п/п n-типа;

    в) примесная ф/п, акцепторная примесь, п/п p-типа.

    Если полупроводник содержит примеси, то фотопроводимость может возникать и при < ∆E: для полупроводников с донорной примесью фотон должен обладать энергией ≥ ∆ED, а для полупроводников с акцепторной примесью ≥ ∆EA. При поглощении света примесными центрами происходит переход электронов с донорных уровней в зону проводимости в случае полупроводника n-типа (рис. 1, б) или из валентной зоны на акцепторные уровни в случае полупроводника р-типа (рис. 1, в). В результате возникает примесная фотопроводимость, являющаяся чисто электронной для полупроводников n-типа и чисто дырочной для полупроводников р-типа.

    Из условия = hc/λ можно определить красную границу фотопроводимости – максимальную длину волны, при которой еще фотопроводимость возбуждается:

    для собственных полупроводников λ0 = hc/∆E

    для примесных полупроводников λ0 = hc/∆Eп

    (∆Eп – в общем случае энергия активации примесных атомов).

    Учитывая значения ∆E и ∆Eп для конкретных полупроводников, можно показать, что красная граница фотопроводимости для собственных полупроводников приходится на видимую область спектра, для примесных же полупроводников – на инфракрасную.

    Тепловое или электромагнитное возбуждение электронов и дырок может и не сопровождаться увеличением электропроводности. Одним из таких механизмов может быть механизм возникновения экситонов. Экситоны представляют собой квазичастицы – электрически нейтральные связанные состояния электрона и дырки, образующиеся в случае возбуждения с энергией, меньшей ширины запрещенной зоны. Уровни энергии экситонов располагаются у дна зоны проводимости. Так как экситоны электрически нейтральны, то их возникновение в полупроводнике не приводит к появлению дополнительных носителей тока, вследствие чего экситонное поглощение света не сопровождается увеличением фотопроводимости.

    Прямозонные и непрямозонные полупроводники и их фотопроводимость


    Прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике. Эти полупроводниковые материалы имеют прямую запрещенную зону, как показано на рис. 2.б. В данном случае электроны валентной и зон проводимости имеют близкие импульсы, потому высока вероятность прямых излучательных переходов и, следовательно, высока внутренняя квантовая эффективность.

    Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

    Известно, что Si, Ge – непрямозонные полупроводники. Это означает, что электрон, находящийся вблизи дна зоны проводимости, имеет импульс, отличающийся от импульса электрона, находящегося вблизи потолка валентной зоны. Это определение иллюстрирует рис. 4.а, из которого видно, что в данном случае зона-зонный переход возможен только при условии компенсации импульсов электронов.


    Рис. 2 Схемы рекомбинации

    а) в непрямозонном п/п, б) в прямозонном п/п\\

    Она может происходить, если при рекомбинации излучается фотон высокой энергии, при этом происходит компенсация импульсов и генерируется фонон. Ещё более трудно выполнимым оказывается условие одновременности этих двух процессов, что приводит к снижению вероятности именно такого рекомбинационного перехода. Таким образом, в непрямозонных полупроводниках преобладают безызлучательные переходы, поэтому внутренняя квантовая эффективность мала.

    Полная проводимость полупроводника определяется равновесными носителями заряда n0, /p0 и фотоносителями и равна:
    = e[ )].
    Так как темновая проводимость , то фотопроводимость полупроводника, обусловленная непосредственным действием излучения, есть

    Отношение фотопроводимости σф к интенсивности света определяет удельную фоточувствительность полупроводника
    Sф= ф/l.

    Преимущества КРТ


    За годы развития HgCdTe уменьшился спрос на примесные кремниевые приемники и приемники на соединениях PbSnTe, но, несмотря на это, в настоящее время у HgCdTe много больше конкурентов, чем когда-либо прежде. К ним относятся кремниевые диоды с барьером Шоттки, гетеропереходы SiGe, структуры с множеством квантовых ям на основе AlGaAs, сверхрешетки на основе напряженных слоев GalnSb, высокотемпературные сверхпроводники, а также два типа тепловых детекторов: пироэлектрические детекторы и кремниевые болометры. Однако ни один из вышеперечисленных детекторов не может конкурировать с HgCdTe по фундаментальным свойствам. Они могут быть более технологичными, но никогда не смогут обеспечить более высокие рабочие характеристики или, за исключением тепловых детекторов, функционировать при более высоких или даже сравнимых температурах.

    Особые преимущества HgCdTe – прямая запрещенная зона, возможность получать как низкую, так и высокую концентрацию носителей заряда, высокую подвижность электронов и низкую диэлектрическую постоянную. Чрезвычайно малое изменение периода кристаллической решетки с изменением состава позволяет выращивать высококачественные многослойные структуры и структуры со ступенчатой шириной запрещенной зоны. HgCdTe может использоваться для детекторов, работающих в различных режимах, а также может быть оптимизирован для использования в диапазоне температур от жидкого гелия до комнатной в чрезвычайно широком диапазоне ИК-спектра (1–30 мкм).

    Такойширокий диапазон длин волн дает и широкие области применения:

    HgCdTe: свойства и технология


    С точки зрения фундаментальных свойств HgCdTe – очень привлекательный материал, он пользуется большим спросом в течение последних тридцати лет. HgCdTe – полупроводниковый твердый раствор со структурой цинковой обманки, чьи свойства меняются непрерывно с изменением состава х между фазами бинарных соединений. Для того чтобы дать полное описание свойств и сказать, как они изменяются с х, необходимо большое число экспериментальных данных. В отличие от сильной зависимости полупроводниковых свойств от состава, период кристаллической решетки CdTe только на 0.3% больше, чем период кристаллической решетки HgTe. Здесь представлены фундаментальные свойства материала, важные при создании ИК-детекторов, а также связанные с технологией.

    Полупроводниковые свойства


    Рабочие характеристики ИК-фотодетекторов определяются следующими основными свойствами используемого полупроводника: шириной запрещенной зоны, собственной концентрацией, подвижностями электронов и дырок, коэффициентом поглощения, скоростями тепловой генерации и рекомбинации. Табл. 1 содержит перечень основных параметров материала.

    Зонная структура


    Электрические и оптические свойства Hg1-xCdxTe определяются структурой запрещенной зоны вблизи Г-точки зоны Бриллюэна. Формы электронной зоны и зоны легких дырок определяются шириной запрещенной зоны и матричным элементом импульса. Ширина запрещенной зоны этого соединения при температуре 4.2 К варьируется от -0,300 эВ для полуметаллического HgTe, проходит ноль при х = 0.15 и далее увеличивается до 1.648 эВ для CdTe.

    Таблица 1. Физические свойства Hg1-xCdxTe (х = 0; 0.2; 1)

    Свойства

    Т, К.

    HgTe

    Hg0.8Cd0.2Te

    CdTe

    Постоянная решетки А, А

    300

    6.4614

    6.4637

    6.4809

    Коэф. теплового расширения а, 10 -6 К.

    300

    4.2

    4.1

    4.1

    Тепловая проводимость С, Вт/(см • К)

    300

    0.031

    0.013

    0.057

    Плотность р, г/см3

    300

    8.076

    7.630

    5.846

    Температура плавления Тm, К.




    943

    940 (тв.)
















    1050 (жид.)

    1365

    Ширина запрещенной зоны Eg, эВ

    300

    -0.1415

    0.1546

    1.4895




    77

    -0.2608

    0.0830

    1.6088




    4.2

    -0.2998

    0.05960

    1.6478

    Эффективные массы: m* /m

    77

    0.029

    0.0064

    0.096

    mh*/m




    0.35–0.7

    0.4–0.7

    0.66

    Подвижности, см2/(В • с): е

    77




    2.5 х105

    4x104

    h







    7x102

    3.8 х 104

    Собственная концентрация ni, см-3

    300




    3.4 х 1016







    77




    9.9 х 1013




    Статическая диэлектрическая постоянная h

    300

    20.8

    17.8

    10.5

    Высокочастотная диэлектрическая постоянная x

    300

    15.1

    13.0

    7.2

    Подвижности


    Благодаря малым эффективным массам, значения подвижности электронов в HgCdTe являются высокими, в то время как подвижность тяжелой дырки – на два порядка ниже. Подвижность электронов определяется рядом механизмов рассеяния, включая рассеяние на ионизированных примесях и разупорядоченностях соединения, электрон – электронные и дырка – дырочные взаимодействия, рассеяние на акустических и полярных оптических фононах. Рассеяние на неполярных оптических фононах вносит значительный вклад в р-типе и полуметаллических материалах n-типа. Несмотря на то, что результаты расчета значений подвижности электронов в основном хорошо согласуются с экспериментом, все еще нет общего теоретического понимания подвижности дырки в HgCdTe.

    Электронная подвижность в Hg1-xCdxTe (в см2/(В • с)) в диапазоне составов 0.2 < х < 0.6 и при температурах Т > 50 К может быть аппроксимирована как
    е = с
    Где г=(0.2/х)0,6, s = (0.2/x)7.5.

    Используют следующую эмпирическую формулу подвижности е для слаболегированного материала n-типа:
    е=9х104(me; T)-3/2. (13)
    Эта формула может быть связана с формулой подвижности для рассеяния на ионизированной примеси при приблизительной оценке зависимостей ес изменением состава х и уровня легирования полупроводника при температуре >77 К. Предлагают эмпирическую формулу (действующую в диапазоне составов 0.18 < х < 0.25) для изменения подвижности е с изменением х при 300 К для самых высококачественных материалов:
    е=104(8.754х-1.044)-1см2/(В•с). (14)
    Значения подвижности дырок при комнатной температуре изменяются в диапазоне от 40 до 80 см2/(В • с), температурные зависимости относительно слабы. Дырочная подвижность при температуре 77 К на порядок выше, чем при комнатной температуре. При моделировании фотоприемников ИК-излучения обычно полагают, что дырочная подвижность вычисляется при предположении, что отношение подвижностей электрона и дырки b= me/mhпостоянна и равна 100.

    Оптические свойства


    Оптические свойства HgCdTe исследованы, главным образом, при значениях энергии порядка ширины запрещенной зоны. Коэффициент поглощения при оптической генерации носителей может быть рассчитан в рамках модели Кейна, включая сдвиг Мосса–Бурштейна. Легирование полупроводника примесью р-типа увеличивает поглощение благодаря снижению заполнения зоны.

    До сих пор появляются значительные несоответствия между известными данными относительно значений коэффициента поглощения. Это вызвано различными концентрациями собственных дефектов и примесей, неравномерным составом и легированием, неоднородностью толщины образцов, механическими деформациями и различными способами обработки поверхности. В высококачественных образцах измеренное поглощение в коротковолновой области спектра находится в хорошем согласии с рассчитанным по модели Кейна, в то время как на длинноволновой границе появляется экспоненциальный хвост. Наличие хвостов зон увеличивается из-за собственных точечных дефектов, примесей и других нарушений в кристалле:
    см-1, (15)
    где Е выражено в электрон-вольтах, Т – в Кельвинах, Т0 = 81.9,

    Е0= -0.3424 + 1.838x + 0.148x2, =3.267 х 104(1 + х) и 0 = exp (53.61x – 18.88). Наилучшее согласие с моделью Кейна достигается в области Eg = E( = 500 см-1). Точка перехода между областью, описываемой моделью Кейна, и экспоненциальным хвостом при температуре 300 К находится при t = 100 + 5000x. Значительное поглощение HgCdTe ниже границ поглощения может быть связано с внутризонными переходами как в зоне проводимости, так и в валентной зоне, а также с переходами между подзонами валентной зоны.

    Измерение поглощения является, возможно, наиболее общим стандартным методом для определения состава и его распределения в объемных кристаллах и эпитаксиальных слоях. Как правило, для толстых (>0.1 мм) образцов используется уровень поглощения 0.5 или 1% для верхней граничной длины волны, для более тонких образцов – различные методы.

    Состав эпитаксиальных слоев обычно определяется из значения длины волны, соответствующей половине максимального пропускания 0.5Тmах. Определение состава может быть затруднено наличием градиента состава по толщине. Измерения коэффициента отражения в ультрафиолетовом и видимом спектрах также используются для определения состава, особенно для характеризации поверхностной области при глубине проникновения 10–30 нм.

    Местонахождение ширины запрещенной зоны Egобычно измеряется по положению максимума коэффициента отражения, а состав рассчитывается из экспериментального выражения
    E1= 2.087 + 0.7109x + 0.1421x 2+ 0.3623x3. (16)
    Сильно влияют на свойства КРТ легирующие примеси

    Эпитаксиальные слои


    Эпитаксиальные методы выращивания HgCdTe, по сравнению с объемными методами, дают возможность выращивать эпитаксиальные слои большой площади (=30 см2) и сложные многослойные структуры с крутыми и сложными профилями состава и профилями легирования полупроводника, необходимые для достижения высоких рабочих характеристик фотодетекторов. Рост происходит при низких температурах, что позволяет уменьшить плотность собственных дефектов. Благодаря низкому давлению ртути не требуется толстостенных ампул, а рост может быть проведен в стандартных системах промышленного типа. Выращенные таким образом эпитаксиальные слои могут быть отожжены при низкой температуре. Эпитаксиальные слои можно использовать для фоторезисторов без ненадежного и отнимающего много времени процесса уменьшения толщины.

    Все эпитаксиальные методы связаны с общей проблемой – потребностью в дешевых подложках большой площади, которые структурно, химически, оптически и механически согласованы с полупроводниками на основе Hg. До настоящего времени не найдено подложки, которая бы удовлетворяла одновременно всем требованиям. CdTe и тройные соединения с близко согласованными решетками из семейства Cd-Zn-Te, Cd-Te-Se и Cd-Mn-Te наиболее часто используются в качестве подложек. Они применяются при выращивании эпитаксиальных слоев с параметрами, соответствующими качеству объемных кристаллов. Подложки обычно выращиваются модифицированным вертикальным и горизонтальным методом Бриджмена без затравки.

    Приборы на основе КРТ


    В 1959 г. началось развитие исследований твердых растворов Hg1-xCdxTe (HgCdTe) с переменной шириной запрещенной зоны, предоставляющих широкие возможности для создания ИК-детекторов. Технологии выращивания HgCdTe развивались и продолжают развиваться, прежде всего, для военных применений. Требование секретности значительно замедляло сотрудничество среди исследовательских групп на национальном и особенно на международном уровне. Основное внимание привлекало создание матрицы фокальной плоскости (МФП), и намного меньше внимания уделялось исследованиям. Однако более чем за три десятилетия произошел значительный прогресс. В настоящее время HgCdTe является наиболее широко используемым полупроводником с переменной шириной запрещенной зоны для создания ИК-фотодетекторов.

    ИК-детекторы.


    В детекторах класса фотоприёмников излучение поглощается внутри материала в результате взаимодействия с электронами, связанными с атомами решётки или с примесными атомами, а также со свободными электронами. Наблюдаемый выходной сигнал обусловлен изменением энергетического распределения электронов. Фотонные детекторы (фотоприёмники) обладают селективной спектральной зависимостью фотоотклика при одинаковой мощности падающего излучения, обеспечивают хорошие пороговые характеристики и высокое быстродействие. Но для достижения этого требуется охлаждение фотоприёмников до криогенных температур. Фотоприёмники, длинноволновая граница которых 3 мкм, обычно охлаждены. Охлаждение необходимо для уменьшения тепловой генерации носителей заряда. Тепловые переходы конкурируют с оптическими, что приводит к большому шуму в неохлаждённых приборах.

    Таблица 2. Типы полупроводниковых фотоприёмников

    Тип

    Переходы

    Тип электрического выходного сигнала

    Примеры

    Собственные

    Межзонные

    Фотопроводящий

    PbS, PbSe, InSb, CdHgTe

    Фотовольтаический

    InSb, InAs, PbTe, CdHgTe, PbSnTe

    Емкость

    InSb, CdHgTe

    ФЭМ

    InSb, CdHgTe

    Примесные

    Примесь-зона

    Фотопроводящий

    Si: In, Si: Ga, Ge: Cu, Ge: Hg

    На свободных носителях

    Внутризонные

    Фотопроводящий

    InSb электронный болометр


    В зависимости от природы взаимодействия класс фотоприемников подразделяется на различные типы. Наиболее важные из них:

    – собственные детекторы;

    – примесные детекторы.

    Второй класс детекторов ИК-излучения – тепловые детекторы. В тепловом детекторе падающее излучение при поглощении изменяет температуру материала и результирующее изменение некоторых физических свойств используется для генерации электрического выходного сигнала.

    Сигнал не зависит от фотонной природы падающего излучения. Так как тепловые эффекты обычно не зависят от длины волны, выходной сигнал зависит от мощности излучения (или скорости её изменения), а не от его спектрального состава. При этом предполагается, что механизм, ответственный за поглощение излучения, сам по себе не зависит от длины волны, что, строго говоря, неверно в большинстве других случаев. В пироэлектрических детекторах измеряется изменение внутренней электрической поляризации, в то время, как в случае термисторных болометров – изменение электрического сопротивления. В отличие от фотоприёмников, тепловые детекторы обычно действуют при комнатной температуре. Они, как правило, характеризуются невысокой чувствительностью и большой инерционностью (потому что нагрев и охлаждение элемента детектора происходит довольно медленно), но дешевле и удобнее. Из-за своей дешевизны они широко используются там, где не требуются высокая эффективность и быстродействие. Будучи неселективными приборами, они часто применяются в ИК-спектрометрах.

    Неохлаждаемые, монолитные матричные приёмники фокальной плоскости (МФП) на основе тепловых детекторов могут коренным образом изменить направление разработок формирователей теплового изображения.

    Теперь рассмотрим более подробно приборы на основе КРТ

    Приемники на основе КРТ.


    На рис. 11 представлена типичная структура HgCdTe фоторезистора. Основной частью такой структуры является слой HgCdTe толщиной 3–20 мкм с контактами. Оптимальная толщина активной области (несколько микрометров) зависит от рабочей температуры и имеет меньшее значение в неохлаждаемых устройствах. Толщина обычно выбирается порядка a-1, где а – коэффициент оптического поглощения. Если толщина меньше, чем диффузионная длина неосновных носителей заряда, рекомбинация носителей заряда на поверхности может преобладать в процессе рекомбинации для некорректно изготовленного детектора. Чтобы получить времена жизни, ограниченные объемными процессами, необходимо уменьшить скорость поверхностной рекомбинации приблизительно до 500 см/с. Это может быть достигнуто обработкой поверхности таким способом, чтобы предотвратить отток носителей на поверхность путем слабого ее обогащения. В результате изгиба зон появляется электрическое поле, которое уменьшает поток неосновных носителей к поверхностным рекомбинационным центрам. Для получения обогащенной поверхности с низкой скоростью рекомбинации часто используется собственный оксид на верхней поверхности, полученный анодным окислением. Верхняя поверхность обычно покрывается пассивирующим слоем и антиотражающим покрытием. Поверхность с обратной стороны приемника также пассивируется. Напротив, поверхность тыльной стороны эпитаксиального слоя, выращенного на CdZnTe подложке, не требует никакой пассивации. Детекторы соединяются с теплопроводящими подложками.

    Для увеличения поглощения излучения детекторы иногда снабжаются тыльным золотым отражателем, изолированным от фоторезистора слоем ZnS или подложкой. Толщина полупроводника и двух диэлектрических слоев выбирается таким образом, чтобы получился оптический резонатор со стоячими волнами в структуре с максимумами на передней поверхности и узлами – на обратной.


    Рис. 11 Поперечное сечение типичного HgCdTe фоторезистора

    Гетероэпитаксиальные структуры КРТ.

    Строение ГЭС КРТ.




    Рис. 14 Строение ГЭС КРТ.

    1-Подложка из монокристаллического арсенида галлия;

    2-Буферный слой Cd Zn Te;

    3-Варизонный слой CdxHg1-xTe x=1->0,215;

    4-Рабочий слой CdxHg1-xTe x=0,215±0,005;

    5-Варизонный слой CdxHg1-xTe x=0,215->0,3–0,35.

    Толщины слоёв должны находится в пределах:

    Буферный слой CdZnTe 2 – 8 мкм,

    Нижний варизонный слой 0,5 – 1,5 мкм,

    Рабочий слой 5 – 7 мкм,

    Верхний варизонный слой 0,1 – 0,5 мкм.

    Отклонение толщины слоёв по образцу не более 10% от среднего значения. Суммарная толщина ГЭС при диаметре 51 мм – 0,4 мм ± 10%, при диаметре 76 мм – 0,5 мм ± 10%.

    Важнейший параметр, характеризующий совершенство слоёв и их пригодность к разработке и выпуску фоторезисторов – время жизни неравновесных носителей заряда достигло (2 – 2,5)*10-6 с. Такие значения времени жизни наблюдаются в высококачественных ОМ КРТ.

    Фоточувствительный элемент на основе гетероэпитаксиальной структуры КРТ.


    Появление новых эпитаксиальных методов получения тонких слоёв КРТ позволило изменить конструкцию фоточувствительного элемента, упростить технологию изготовления фоторезисторов из эпитаксиальных структур и существенно улучшить характеристики, в том числе вольтовую чувствительность. Жидкофазная эпитаксия, при которой в процессе выращивания слоя КРТ заданного состава происходит неоднородный подтрав подложки, а на поверхности эпитаксиального слоя КРТ образуется рельеф, также пригодна для изготовления фоторезисторов радикальном изменении технологии. Подтрав приводит к разнотолщинности слоя КРТ и разбросу сопротивления фоточувствительных площадок, что ухудшает однородность фотоэлектрических характеристик и качества фотоприёмника. Рельеф поверхности при ЖФЭ вынуждает вводить дополнительную химико-механическую обработку поверхности, приводящую к ухудшению плоскости слоя КРТ и снижению выхода годных.

    Развитие молекулярно-лучевой эпитаксии позволило получить слои КРТ с зеркальной поверхностью оптимальной толщины. Сложные гетероэпитаксиальные структуры (ГЭС) материала КРТ, полученные методом молекулярно лучевой эпитаксии позволили создать новую конструкцию фоточувствительного элемента фоторезистора.



    Рис. 15 ФЧЭ на основе ГЭС КРТ.

    1 – подложка контактного растра, 2 – подслой хрома, 3 – контактная дорожка Au, 4 – клей, 5 – подложка GaAs, 6 – буферный слой CgZnTe, 7 – варизонный слой CdxHg1-xTe, 8 – токоподвод Au, 9 – рабочий слой Cg0,2Hg0,8Te, 10 – припой InAu, 11 – варизонный слой CdxHg1-xTe, 12 – слой CdTe, 13 – слой ZnSe, 14 – слой YtSc, 15 – слой n+.

    Особенности фоторезистора на основе ГЭС КРТ с варизонными слоями, полученными методом молекулярно-лучевой эпитаксии.


    Преимущества данной конструкции ФЧЭ состоят:

    – в возможности увеличения вольтовой чувствительности в 3 – 4 раза за счёт уменьшения толщины рабочего слоя до ≈ 5 мкм вместо 15 – 20 мкм в конструкции ФЧЭ с запирающими контактами и соответствующего увеличения темнового сопротивления;

    – в практически полном подавлении поверхностной рекомбинации за счёт встроенного электрического поля варизонной структуры:

    E = (1/e)*(dEν/dx),

    препятствующего диффузии неравновесных носителей к поверхности ФЧЭ.

    Значение градиента состава варизонных слоёв определяются из соотношения скорости диффузии носителей заряда к поверхности и скорости дрейфа носителей в электрическом поле смещения, Vдиф.<< Vдр., где Vдиф. i = Dp/bi (Dp – коэффициент диффузии дырок в варизонных нижнем и верхнем слое, а bi – толщина i-го варизонного слоя), Vдр. = μp(1/e)*(dEν/dx).

    Следовательно:
    Dp/bi << μp(1/e)*(dEν/dx),

    dEν/dx >> eDp/bi μp.
    Dp ≈ 2 см2/с; B = 2*10-4 см; μp ≈ 400 см2/В*с и eD = μpkT ≈ 32,5 эВ/см. Таким образом E >> 35 В/см, что легко достижимо в варизонных слоях. Следствием этого является практически полная реализация времени жизни неравновесных носителей в объёме полупроводников:

    – наличие варизонного слоя соответствующего градиента состава в фоторезисторе исключает шунтирование рабочей области поверхностными слоями и устраняет вклад поверхностной рекомбинации в шумы вида 1/f;

    – варизонные слои фоторезистора приводят к расширению спектральной области фотоответа и увеличению интегральной чувствительности фоторезистора.


    написать администратору сайта