мэт 3. исследование электрических свойств проводниковых материалов
Скачать 16.01 Kb.
|
МИНОБРНАУКИ РОССИИ Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) Кафедра Микро- и наноэлектроники отчет по лабораторной работе №1 по дисциплине «МАТЕРИАЛЫ ЭЛЕКТРОННОЙ ТЕХНИКИ» Тема: « ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ СВОЙСТВ ПРОВОДНИКОВЫХ МАТЕРИАЛОВ»
Санкт-Петербург 2022 Цели работы: измерение сопротивлений объемных и тонкопленочных резисторов; исследование зависимостей удельных электрических сопротивлений и их температурных коэффициентов от температуры и состава резистивных материалов, а также зависимостей термоЭДС термопар отразностей температур контактов. Основные понятия и определения Проводники электрического тока – это материалы и среды с малым удельным электрическим сопротивлением, значения которого находятся в пределах 10−5 …10−8 Ом∙м, обладающие высокой удельной проводимостью, обусловленной наличием в них большой концентрации электрических зарядов, способных свободно перемещаться. Все металлы и сплавы на их основе в твердом и жидком состоянии и некоторые модификации углерода, механизм протекания электрического тока в которых обусловлен движением свободных электронов, относятся к проводникам электрического тока с электронной электропроводностью или проводникам первого рода. Электролиты и расплавы ионных соединений относятся к проводникам с ионной электропроводностью, или проводникам второго рода. Ионизированный газ в состоянии плазмы тоже является проводящей средой, в которой объемные плотности положительно и отрицательно заряженных частиц практически одинаковы. Высокая проводимость проводников позволяет использовать их для передачи электрической энергии, возбуждения электромагнитных полей, создания электрических межсоединений, контактирования и др. К основным электрическим характеристикам проводниковых материалов относят удельное сопротивление ρ и температурный коэффициент удельного сопротивления αρ. Наилучшими проводниками электрического тока являются металлы, механизм протекания тока в которых заключается в коллективном движении свободных электронов под действием приложенного электрического поля. В процессе направленного движения электроны испытывают рассеяние на статических (атомы, вакансии, междоузельные атомы и т. д.) и динамических дефектах структуры. |