Источники вторичного питания. Источники электропитания. Источники электропитания
Скачать 98.54 Kb.
|
Источники электропитания Электропитание радиоэлектронной аппаратуры (РЭА) осуществляется от различных источников постоянного или переменного тока. Самый распространенный способ электропитания от сети переменного тока предполагает использование выпрямителей, сглаживающих фильтров и стабилизаторов напряжения или тока. 12.1. Выпрямители и сглаживающие фильтры 12.2. Параметрические стабилизаторы 12.3. Компенсационные стабилизаторы 12.4. Импульсные стабилизаторы 12.5. Транзисторные преобразователи 12.6. Элементы импульсных стабилизаторов в программе EWB 5.0 Выпрямители и сглаживающие фильтры Выпрямительные устройства используются для преобразования переменного напряжения в постоянное. Выпрямительное устройство обычно состоит из трансформатора, полупроводниковых диодов, осуществляющих выпрямление переменного напряжения, и сглаживающего фильтра, уменьшающего пульсацию выпрямленного напряжения. Для работы выпрямителей принципиальное значение имеет характер фильтра, включенного на выходе выпрямителя. Выпрямители, нагруженные на фильтр в виде конденсатора, используются в широком диапазоне выпрямленных напряжений и мощностей. Трансформаторы этих выпрямителей должны иметь большую мощность, чем выпрямители с индуктивным фильтром. К недостаткам выпрямителей с емкостным фильтром относятся большая амплитуда тока через выпрямительный диод в момент включения источника. Выпрямители с индуктивным фильтром применяются в широком диапазоне выпрямленных напряжений при мощностях от десятков ватт до нескольких киловатт и при токах свыше 1 А. Такие выпрямители имеют меньшее внутреннее сопротивление по сравнению с выпрямителями с емкостным фильтром, что уменьшает зависимость выпрямленного напряжения от тока нагрузки. Применение индуктивного фильтра ограничивает импульс тока через диод. Недостатком выпрямителей с таким фильтром являются перенапряжения, возникающие на выходной емкости и на дросселе фильтра при включении выпрямителя и при скачкообразных изменениях тока нагрузки, что представляет опасность для элементов самого выпрямителя и его нагрузки. Выпрямители без сглаживающего фильтра применяются сравнительно редко и в тех случаях, когда пульсации напряжения на нагрузке не имеют существенного значения. Сглаживающий фильтр также часто отсутствует в многофазных выпрямителях, имеющих малую пульсацию выпрямленного напряжения. Выбор схемы выпрямителя зависит от ряда факторов, которые должны учитываться в зависимости от требований, предъявляемых к выпрямительному устройству. К ним относятся: выпрямленное напряжение и мощность, частота пульсации выпрямленного напряжения, число диодов, обратное напряжение на диоде, коэффициент использования мощности трансформатора, напряжение вторичной обмотки. Повышение частоты пульсации позволяет уменьшить размеры сглаживающего фильтра. Однополупериодную схему (рис. 12.1, а) обычно применяют при выпрямленных токах до нескольких десятков миллиампер и в тех случаях, когда не требуется высокой степени сглаживания выпрямленного напряжения. Эта схема характеризуется низким коэффициентом использования мощности трансформатора. Коэффициент пульсации на выходе такого выпрямителя, определяется по приближенной формуле: Kn=6400/RnC. Здесь и далее сопротивление нагрузки — в омах, емкость фильтра — в микрофарадах, частота питающей сети — 50 Гц. Двухполупериодный выпрямитель со средним выводом вторичной обмотки трансформатора (рис. 12.1, б) применяют в низковольтных устройствах. По сравнению с однофазным мостовым выпрямителем он позволяет уменьшить вдвое число диодов и тем самым понизить потери. Коэффициент пульсации определяется по приближенной формуле: Кn=1920/(RпС). Следует отметить, что модель трансформатора в программе EWB не во всех случаях применима из-за необходимости заземления обмоток (см. разд. 4.6). По этой причине во всех схемах выпрямителей далее в качестве первичных источников использованы источники переменного напряжения из библиотеки Passive. Однофазная мостовая схема (рис. 12.2, а) характеризуется высоким коэффициентом использования мощности и поэтому может быть рекомендована для использования в устройствах повышенной мощности при выходных напряжениях от десятков до сотен вольт; пульсации такие же, как в предыдущей схеме. Симметричная схема удвоения напряжения (рис. 12.2, б) представляет собой последовательное соединение двух однополупериодных выпрямителей и применяется при высоких напряжениях (до 1...2 кВ) при небольших токах нагрузки. Приближенная формула для коэффициента пульсации: Kn=6400/(RnC). Пульсации на каждом конденсаторе схемы удвоения в 2 раза больше пульсации на ее выходе. Несимметричные схемы с умножением напряжения применяются при малых токах нагрузки, т.е. в режиме, близком к холостому ходу. Одна из них показана на рис. 12.3. В этой схеме выпрямленное напряжение почти в 5 раз больше амплитуды источника напряжения Ui (вторичной обмотки трансформатора), так как коэффициент умножения, равный числу диодов или конденсаторов, в данном случае составляет 5. Увеличение выпрямленного напряжения достигается добавлением нужного числа каскадов, каждый из которых состоит из диода и конденсатора. В схемах умножения частота пульсации равна частоте питающей сети; обратное напряжение на диодах и напряжение на всех конденсаторах (кроме первого) равно удвоенной амплитуде напряжения Ui. Отметим, что в реальных выпрямителях при нечетном числе каскадов по вторичной обмотке протекает постоянный ток, вызывающий нежелательное намагничивание трансформатора, поэтому такого варианта следует избегать. Аналитическое выражение для коэффициента пульсации определяется приближенной формулой: Kn=1600N2(RnC). При этом емкость (в фарадах) конденсатора каждого плеча выбирается одинаковой и равной C=2(N+2)/(Rn-Fc), где N — коэффициент умножения, F, — частота источника питания, Гц. Трехфазная мостовая схема (рис. 12.4) обладает наилучшим коэффициентом использования мощности трансформатора, наименьшим обратным напряжением на диодах и высокой частотой пульсации выпрямленного напряжения. Схема применяется в широком диапазоне выпрямленных напряжений и мощностей. Рис. 12.3. Выпрямитель с умножением напряжения Отметим, что в каталоге схем программы имеется выпрямитель по схеме рис. 12.4 (файл 3phase.ca4). Обращаем внимание на необходимость при моделировании установить для источников Ul, U2, U3 соответствующую начальную фазу. Допустимые пульсации на выходе источников питания зависят от характера нагрузки и могут составлять от тысячных долей процента (первые каскады микрофонных усилителей) до единиц и десятков процентов (исполнительные устройства). Для уменьшения пульсации используются дополнительные фильтры. Г-образный индуктивно-емкостный (LC) фильтр (рис. 12.5, а) применяется в источниках средней и большой мощности вследствие того, что падение напряжения на фильтре можно сделать сравнительно малым и тем самым обеспечить более высокий КПД. Недостатки LC-фильтров: 1) сравнительно большие размеры и вес (при низкой частоте первичного источника); 2) дроссель фильтра является источником помех, создаваемых магнитным полем рассеяния; 3) дроссель фильтра иногда является причиной сложных переходных процессов, приводящих к искажениям в работе устройств (усилителя, передатчика и т.п.); 4) фильтр не устраняет медленных изменений питающих напряжений. Произведение LC (Гн-мкФ) зависит от необходимого коэффициента сглаживания К, (отношение коэффициента пульсации на входе фильтра к коэффициенту пульсации на его выходе) и определяется по формуле; где Fc — частота выпрямляемого тока (Гц); m — количество фаз. Для однополупериод-ной схемы m=1, для двухполупериодной и мостовой, а также для параллельной схемы удвоения m=2. Для двухполупериодной или мостовой схемы при частоте сети 50 Гц Величины L и С должны быть выбраны так, чтобы выполнялось условие Если произведение LC больше 200...250, то фильтр следует делать двухзвенным, причем второе звено можно выполнить по схеме ЕС-фильтра. Г-образный реостатно-емкостный фильтр (рис. 12.5, б) целесообразно применять при малых выпрямленных токах (менее 15... 20 мА) и небольших значениях коэффициента сглаживания. Такой фильтр является достаточно дешевым, имеет малые размеры и вес. Его недостатком является малый КПД из-за большого падения выпрямленного напряжения на сопротивлении фильтра. Произведение ЕС (Ом-мкФ) определяется по формуле: EC=150000Kc/(mFc). Сопротивление Е выбирается из условия допустимого падения выпрямленного напряжения на фильтре. Рис. 12.6. Фильтр с полупрбводниковым триодом Фильтр с полупроводниковым триодом показан на рис. 12.6. Принцип его действия основан на том, что для переменной составляющей пульсирующего тока транзистор представляет сравнительно большое сопротивление, а для постоянного тока его сопротивление намного меньше. Транзистор включен последовательно с нагрузкой. Цепочка El, C1 обеспечивает постоянство тока эмиттера при кратковременных изменениях тока нагрузки и должна иметь большую постоянную времени. Сопротивлением Е2 устанавливается режим транзистора по постоянному току. Транзистор выбирается так, чтобы ток нагрузки фильтра был не менее, чем в 2 раза меньше максимального допустимого тока коллектора. Наибольшее напряжение между коллектором и эмиттером, которое может возникнуть в момент включения выпрямителя, не должно превышать максимально допустимого напряжения на коллекторе. Мощность рассеяния на триоде также не должна превышать допустимой. Сопротивление резистора Е1 выбирается в пределах 80... 100 Ом, Е2 — порядка десятков кОм. Емкость конденсатора Cl>l/(2mFcEl). Контрольные вопросы и задания 1. Дайте определение коэффициента пульсации, какие значения он может принимать в зависимости от типа аппаратуры и отдельных ее блоков? 2. Для каждой из приведенных выше схем выпрямителей определите зависимость коэффициента пульсации от емкости фильтрующего конденсатора и сопротивления нагрузки. 3. Путем моделирования проверьте справедливость приближенных выражений для коэффициентов пульсации рассмотренных схем выпрямителей. 4. Проверьте эффективность использования в выпрямителях транзисторного и Г-образных фильтров (при моделировании выберите емкости конденсаторов этих фильтров одинаковыми). Определите коэффициент сглаживания фильтров. Параметрические стабилизаторы Параметрические стабилизаторы напряжения (ПСН) используются в маломощных ИВЭ (с выходным током до 15...20 мА), а также в качестве источников опорного напряжения в компенсационных стабилизаторах и контрольно-измерительной аппаратуре. Для стабилизации постоянного напряжения в них применяются элементы с нелинейной вольтамперной характеристикой, напряжение на которых мало зависит от протекающего через них тока. В качестве таких элементов используются полупроводниковые стабилитроны (диоды Зенера) и стабисторы. Основная схема однокаскадного ПСН приведена на рис. 12.7, а. При изменении входного напряжения Ui ток Is через стабилитрон VD изменяется, что приводит к незначительным изменениям напряжения на стабилитроне, а следовательно, и на нагрузке. Изменение Uo зависит от приращения напряжения DUi, сопротивления ограничивающего резистора Ко и внутреннего сопротивления стабилитрона, равного Rs=dUs/dIs. Коэффициент стабилизации определяется по приближенной формуле: Kcт=(Uo/Ui)(Ro/Rs). Внутреннее сопротивление стабилизатора, определяемое в основном дифференциальным сопротивлением стабилитрона, достигает минимального значения для стабилитронов с напряжением стабилизации 6...8 В. Температурный коэффициент напряжения Ктн стабилитрона определяет отклонение выходного напряжения ПСН при изменении температуры. Установлено, что наибольшая температурная зависимость наблюдается для приборов с напряжением стабилизации Us>5,5 В. Температурная компенсация в этом случае может быть достигнута включением последовательно со стабилитроном диодов в прямом направлении (VD2 и VD3 на рис. 12.7, б). Однако при этом возрастает внутреннее сопротивление ПСН за счет дифференциального сопротивления термокомпенсирую-щих диодов. Кроме того, термокомпенсированный ПСН имеет повышенное значение Us и пониженный коэффициент стабилизации. Коэффициент стабилизации ПСН по схеме рис. 12.7, б равен Kcт=(UoRo)/Ui(Rs+Rs'), где Rs'— суммарное динамическое сопротивление термо-компенсирующих диодов VD2, VD3. Если требуется повышенная стабильность выходного напряжения, то применяются двухкаскадные или мостовые схемы стабилизаторов, приведенные на рис. 12.8 и 12.9. Коэффициент стабилизации ПСН по схеме рис. 12.8 где Rs, Rs' — динамические сопротивления стабилитронов VD1,VD2. Предварительная стабилизация напряжения в двухкаскадном ПСН (рис. 12.8) с помощью элементов Ro и VD1 позволяет получить достаточно высокий коэффициент стабилизации выходного напряжения. Повышение коэффициента стабилизации в мостовых схемах (рис. 12.9) достигается за счет компенсирующего напряжения на резисторе R2 или стабилитроне VD1 при изменениях входного напряжения. Коэффициент стабилизации при Rn=const для схемы рис. 12.9, Для ПСН на рис. 12.9, б где Rs, Rs' — дифференциальные сопротивления стабилитронов VD1 и VD2. В мостовых параметрических стабилизаторах коэффициент стабилизации теоретически может быть бесконечно большим, если выбрать элементы, исходя из условий равенства нулю выражений в скобках. Внутреннее сопротивление для схемы на рис. 12.9, a Ri=Rs+R2, а для схемы на рис. 12.9, б Ri=Rs+Rs'. Величина отклонения выходного напряжения мостовых схем ПСН при изменении температуры зависит от температурных коэффициентов стабилитронов, а для схемы на рис. 12.9, а еще и от температурных коэффициентов резисторов R1 и R2. Особенностью мостовой схемы на рис. 12.9, б является возможность получения низких выходных напряжений при небольшом температурном уходе за счет применения стабилитронов с мало отличающимися температурными коэффициентами. Следует отметить, что относительно высокая стабильность выходного напряжения в ПСН на рис. 12.8 и 12.9 достигается за счет значительного ухудшения КПД по сравнению со схемой на рис. 12.7. Повысить стабильность выходного напряжения ПСН без ухудшения КПД позволяет схема на рис. 12.10 за счет применения источника тока, выполненного на транзисторе VT, стабилитроне VD1 и резисторах Re и Rb. Это позволяет стабилизировать ток, протекающий через стабилитрон VD2 и тем самым уменьшить нестабильность напряжения на нагрузке при изменениях входного напряжения. Температурный уход и внутреннее сопротивление этого ПСН практически такие же, как в схеме на рис. 12.10. Максимальная выходная мощность рассмотренных ПСН ограничивается предельными значениями тока стабилизации и рассеиваемой мощностью стабилитронов. Если использовать транзистор в режиме эмиттерного повторителя со стабилитроном в цепи базы (рис. 12.11, а), мощность в нагрузке может быть увеличена. Коэффициент стабилизации такого ПСН , а внутреннее сопротивление — сопротивления базы, эмиттера, коллектора и коэффициент передачи тока транзистора в схеме с ОЭ соответственно. Отметим, что ПСН по схеме рис. 12.11, а при Us>5,5 В по температурной нестабильности уступает рассмотренным выше стабилизаторам. На рис. 12.11, б приведена схема ПСН на транзисторах различной проводимости, выполняющих роль стабилизаторов тока. Для него характерна высокая стабильность выходного напряжения и возможность одновременного подключения двух нагрузок Rn и Rn' к различным шинам входного напряжения. По коэффициенту стабилизации и температурному уходу эта схема незначительно превосходит схему на рис. 12.10, а внутренние сопротивления Rs и Rs' определяются стабилитронами VD1 и VD2 соответственно. Моделирование рассмотренных стабилизаторов можно проводить двумя способами — с использованием на входе стабилизатора источника постоянного напряжения с имитатором источника пульсации или с использованием рассмотренных в предыдущем разделе выпрямителей. При этом последовательно со стабилитроном необходимо включить амперметр, а на выход стабилизатора — вольтметр. При наличии этих двух приборов можно определить дифференциальное сопротивление Rs=dUo/dIs в рабочей точке стабилитрона и затем рассчитать коэффициент стабилизации по приведенным формулам. Поскольку они справедливы только для ненагруженного стабилизатора, то сопротивление нагрузки Rn необходимо выбирать больше 100 кОм. Для наблюдения и измерения пульсации используется осциллограф. |