СКВАЖИННАЯ ДОБЫЧА НЕФТИ Изменённое.. Источники пластовой энергии
Скачать 2.23 Mb.
|
§ 3. Техника перфорации скважинСуществует четыре способа перфорации: пулевая, торпедная, кумулятивная, пескоструйная. Первые три способа перфорации осуществляются на промыслах геофизическими партиями с помощью оборудования, имеющегося в их распоряжении. Поэтому детально техника и технология этих видов перфорации первыми тремя способами изучается в курсах промысловой геофизики. Пескоструйная перфорация осуществляется техническими средствами и службами нефтяных промыслов. При пулевой перфорации в скважину на электрическом кабеле спускается стреляющий пулевой аппарат, состоящий из нескольких (8 - 10) камор - стволов, заряженных пулями диаметром 12,5 мм. Каморы заряжаются взрывчатым веществом (ВВ) и детонаторами. При подаче электрического импульса происходит залп. Пули пробивают колонну, цемент и внедряются в породу. Существует два вида пулевых перфораторов: перфораторы с горизонтальными стволами. В этом случае длина стволов мала и ограничена радиальными габаритами перфоратора; перфораторы с вертикальными стволами с отклонителями пуль на концах для придания полету пули направления, близкого к перпендикулярному по отношению к оси скважины. Пулевой перфоратор ПБ-2 собирается из нескольких секций. Вдоль секции просверлено два или четыре вертикальных канала, пересекающих каморы с ВВ, стволы которых заряжены пулями и закрыты герметизирующими прокладками. Верхняя секция - запальная имеет два запальных устройства. При подаче по кабелю тока срабатывает первое запальное устройство и детонация распространяется по вертикальному каналу во все каморы, пересекаемые этим каналом. В результате почти мгновенного сгорания ВВ давление газов в каморе достигает 2 тыс. МПа, под действием которых пуля выбрасывается. Происходит почти одновременный выстрел из половины всех стволов. При необходимости удвоить число прострелов по второй жиле кабеля подается второй импульс и срабатывает вторая половина стволов от второго запального устройства. В этом перфораторе масса заряда ВВ одной каморы мала и составляет 4-5 г, поэтому пробивная способность его невелика. Длина образующихся перфорационных каналов составляет 65 - 145 мм (в зависимости от прочности породы и типа перфоратора). Диаметр канала 12 мм. На рис. 4.6 показан пулевой перфоратор с вертикально-криволинейными стволами ПВН-90. При вертикальном расположении стволов объем камор и длина стволов больше. Одна камора отдает энергию взрыва сразу двум стволам. Масса ВВ в одной каморе достигает 90 г. Давление газов в каморах здесь ниже и составляет 0,6 - 0,8 тыс. МПа, но действие их более продолжительное. Это позволяет увеличить начальную скорость вылета пули и пробивную способность перфоратора. Длина перфорационных каналов в породе получается 145 - 350 мм при диаметре около 20 мм. В каждой секции перфоратора имеются четыре вертикальных ствола, на концах которых сделаны плавные желобки - отклонители. Пули, изготовленные из легированной стали, для уменьшения трения в отклонителях покрываются медью или свинцом. Выстрел из всех стволов происходит практически одновременный, так как все каморы с ВВ сообщаются огнепроводным каналом. В каждой секции два ствола направлены вверх и два вниз. Это позволяет компенсировать реактивные силы, действующие на перфоратор. Торпедная перфорация осуществляется аппаратами, спускаемыми на кабеле и стреляющими разрывными снарядами диаметром 22 мм. Внутренний заряд ВВ одного снаряда равен 5 г. Аппарат состоит из секций, в каждой из которых имеется по два горизонтальных ствола. Снаряд снабжен детонатором накольного типа. При остановке снаряда происходит взрыв внутреннего заряда и растрескивание окружающей горной породы. Масса ВВ одной камеры - 27 г. Глубина каналов по результатам испытаний составляет 100 - 160 мм, диаметр канала - 22 мм. На 1 м длины фильтра обычно делается не более четырех отверстий, так как при торпедной перфорации часты случаи разрушения обсадных колонн. Пулевая и торпедная перфорации применяются ограниченно, так как все больше вытесняются кумулятивной перфорацией. Кумулятивная перфорация осуществляется стреляющими перфораторами, не имеющими пуль или снарядов. Прострел преграды достигается за счет сфокусированного взрыва. Такая фокусировка обусловлена конической формой поверхности заряда ВВ, облицованной тонким металлическим покрытием (листовая медь толщиной 0,6 мм). Энергия взрыва в виде тонкого пучка газов - продуктов облицовки пробивает канал. Кумулятивная струя приобретает скорость в головной части до 6 - 8 км/с и создает давление на преграду до 0,15 - 0,3 млн. МПа. При выстреле кумулятивным зарядом в преграде образуется узкий перфорационный канал глубиной до 350 мм и диаметром в средней части 8 - 14 мм. Размеры каналов зависят от прочности породы и типа перфоратора. Все кумулятивные перфораторы имеют горизонтально расположенные заряды и разделяются на корпусные и бескорпусные. Корпусные перфораторы после их перезаряда используются многократно. Бескорпусные - одноразового действия. Однако разработаны и корпусные перфораторы одноразового действия, в которых легкий корпус из обычной стали используется только лишь для герметизации зарядов при погружении их в скважину. П ерфораторы спускаются на кабеле (имеются малогабаритные перфораторы, опускаемые через НКТ), а также перфораторы, спускаемые на насосно-компрессорных трубах. В последнем случае инициирование взрыва производится не электрическим импульсом, а сбрасыванием в НКТ резинового шара, действующего как поршень на взрывное устройство. Масса ВВ одного кумулятивного заряда составляет (в зависимости от типа перфоратора) 25 - 50 г. Максимальная толщина вскрываемого интервала кумулятивным перфоратором достигает 30 м, торпедным - 1 м, пулевым - до 2,5 м. Это является одной из причин широкого распространения кумулятивных перфораторов. Рассмотрим устройство корпусного кумулятивного перфоратора ПК-105ДУ (рис. 4.7), нашедшего широкое распространение. Электрический импульс подается на взрывной патрон 1, находящийся в нижней части перфоратора. При взрыве детонация передается вверх от одного заряда к другому по детонирующему шнуру 2, обвивающему последовательно все заряды. Корпусные перфораторы позволяют простреливать интервал до 3,5 м за один спуск, корпусные одноразового действия - до 10 м и бескорпусные или так называемые ленточные - до 30 м. Ленточные перфораторы (рис. 4.8) намного легче корпусных, однако их применение ограничено величинами давления и температуры на забое скважины, так как их взрывной патрон и детонирующий шнур находятся в непосредственном контакте со скважинной жидкостью. В ленточном перфораторе заряды смонтированы в стеклянных (или из другого материала'), герметичных чашках, которые размещены в отверстиях длинной стальной ленты с грузом на конце. Вся гирлянда спускается на кабеле. Обычно при залпе лента полностью не разрушается, но для повторного использования не применяется. Головка, груз, лента после отстрела извлекаются на поверхность вместе с кабелем. К недостаткам бескорпусных перфораторов надо отнести невозможность контролирования числа отказов, тогда как в корпусных перфораторах такой контроль легко осуществим при осмотре извлеченного из скважины корпуса. Кумулятивные перфораторы нашли самое широкое распространение. Подбирая необходимые ВВ, можно в широких диапазонах регулировать их термостойкость и чувствительность к давлению и этим самым расширить возможности перфорации в скважинах с аномально высокими температурами и давлениями. Однако получение достаточно чистых с точки доения фильтрации, и глубоких каналов в породе остается актуальной проблемой и до сих пор. В этом отношении определенным шагом вперед было осуществление пескоструйной перфорации, которая позволяет получить достаточно чистые и глубокие перфорационные каналы в пласте. § 4. Пескоструйная перфорацияПри гидропескоструйной перфорации разрушение преграды происходит в результате использования абразивного и гидромониторного эффектов высокоскоростных песчано-жидкостных струй, вылетающих из насадок специального аппарата - пескоструйного перфоратора, прикрепленного к нижнему концу насосно-компрессорных труб. Песчано-жидкостная смесь закачивается в НКТ насосными агрегатами высокого давления, смонтированными на шасси тяжелых автомашин, поднимается из скважины на поверхность по кольцевому пространству. Это сравнительно новый метод вскрытия пласта. В настоящее время ежегодно обрабатываются около 1500 скважин этим методом. Область и масштабы применения гидропескоструйного метода обработки скважин постоянно расширяются, и кроме вскрытия пласта он нашел применение при капитальных ремонтах, вырезке колонн и в сочетании с другими методами воздействия. При гидропескоструйной перфорации (ГПП) создание отверстий в колонне, цементном камне и канала в породе достигается приданием песчано-жидкостной струе очень большой скорости, достигающей нескольких сотен метров в секунду. Перепад давления при этом составляет 15 - 30 МПа. В породе вымывается каверна грушеобразной формы, обращенной узким конусом к перфорационному отверстию в колонне. Размеры каверны зависят от прочности горных пород, продолжительности воздействия и мощности песчано-жидкостной струи. При стендовых испытаниях были получены каналы до 0,5 м. Размеры канала увеличиваются сначала быстро и затем стабилизируются в результате уменьшения скорости струи в канале и поглощения энергии встречным потоком жидкости, выходящей из канала через перфорационное отверстие. С тендовые испытания ГПП, проведенные ВНИИ, позволили установить соотношения между параметрами процесса (рис. 4.9), необходимые для его проектирования. Результаты, приведенные на рис. 4.9, получены при разрушении цементных блоков, утопленной под уровень жидкости струей водопесчаной смеси. Время воздействия на преграду не должно превышать 15 - 20 мин, так как при более продолжительном воздействии каналы не увеличиваются. П ерфорация производится пескоструйным аппаратом, спускаемым на насосно-компрессорных трубах. Аппарат АП-6М конструкции ВНИИ (рис. 4.10) имеет шесть боковых отверстий, ___________________ Рис. 4.10. Аппарат для пескоструйной перфорации АП-6М: 1 - корпус. 2 - шар опрессовочного клапана; 3 - узел насадки; 4 - заглушка; 5 - шар клапана; 6 - хвостовик; 7 - центратор ___________________ в которые ввинчиваются шесть насадок для одновременного создания шести перфорационных каналов. При малой подаче насосных агрегатов часть отверстий может быть заглушена пробками. Насадки в стальной оправе изготавливаются из твердых сплавов, устойчивых против износа водопесчаной смесью, трех стандартных диаметров 3; 4, 5 и 6 мм. Насадки диаметром 3 мм применяются для вырезки прихваченных труб в обсаженной скважине, когда глубина резания должна быть минимальной. Насадки диаметром 4,5 мм используются для перфорации обсадных колонн, а также при других работах, когда возможный расход жидкости ограничен. Насадки диаметром 6 мм применяют для получения максимальной глубины каналов и при ограничении процесса по давлению. Медленно вращая пескоструйный аппарат или вертикально его перемещая, можно получить горизонтальные или вертикальные надрезы и каналы. В этом случае сопротивление обратному потоку жидкости уменьшается и каналы получаются примерно в 2,5 раза глубже. В пескоструйном аппарате предусмотрены два шаровых клапана, сбрасываемых с поверхности. Диаметр нижнего клапана меньше, чем седло верхнего клапана, поэтому нижний шар свободно проходит через седло верхнего клапана. После спуска аппарата, обвязки устья скважины и присоединения к нему насосных агрегатов система спрессовывается давлением, превышающим рабочее в 1,5 раза. Перед опрессовкой в НКТ сбрасывается шар диаметром 50 мм от верхнего клапана для герметизации системы. После опрессовки обратной промывкой, т. е. закачкой жидкости в кольцевое пространство, верхний шар выносится на поверхность и извлекается. Затем в НКТ сбрасывается малый - нижний шар, и при его посадке па седло нагнетаемая жидкость получает выход только через пасадки. После этого проводится перфорация закачкой в НКТ водопесчаной смеси. Концентрация песка в жидкости обычно составляет 80 - 100 кг/м3. При пескоструйной перфорации НКТ испытывают большие напряжения. Усилия в муфтовом соединении НКТ в верхнем - наиболее опасном сечении от веса колонны НКТ и давления жидкости не должны превосходить усилия, страгивающего резьбовое соединение муфт, Рстр. Общие гидравлические потери при гидропескоструйной перфорации складываются из следующих: P1 - потерь давления на трение в НКТ при движении песчано-жидкостной смеси от устья до пескоструйного аппарата; ΔP - потерь давления в насадках, определяемых по графикам или расчетным путем; P2 - потерь на трение восходящего потока жидкости в затрубном кольцевом пространстве; P3 - противодавления на устье скважины в затрубном пространстве при работе по замкнутой системе. Так как гидростатические давления жидкости в НКТ и кольцевом пространстве уравновешены, то давление нагнетания на устье Pу будет равно сумме всех потерь: . (4.26) Величина P1 определяется по формулам трубной гидравлики , (4.27) где коэффициент трения λ определяется как обычно, через число Re, но увеличивается на 15 - 20% вследствие присутствия песка в жидкости; L - длина НКТ; dв - внутренний диаметр НКТ; vт - линейная скорость потока в НКТ, vт = 4Q/(πdв2); ρ - плотность песчано-жидкостной смеси. Величина ΔP определяется по графикам (см. рис. 4.9). Величина Р2 также определяется по формуле трубной гидравлики для движения жидкости по кольцевому пространству , (4.28) где Dв - внутренний диаметр обсадной колонны, dн - наружный диаметр НКТ. vк = 4Q/(π(Dв2 - dн2)) - линейная скорость восходящего потока жидкости в кольцевом пространстве, которая не должна быть меньше 0,5 м/с для полного выноса песка и предупреждения прихвата труб. Во ВНИИ были определены суммарные потери на трение (Р1 + Р2) в реальных скважинах при прокачке водопесчаных смесей (рис. 4.11). Суммарный расход жидкости равен произведению числа действующих насадок n на расход жидкости через одну насадку qж: . (4.29) Например, при шести насадках и расходе через одну насадку 4 л/с общий расход составит 24 л/с, а потери на трение в скважине глубиной 1700 м при 168-мм колонне и 73-мм НКТ составит около 8,2 МПа (см. рис. 4.11). При расходе через 4,5-мм насадку, равном 4 л/с, перепад давления в насадках ΔP составит около 40,0 МПа (см. рис. 4.9 При выборе перепада давления в насадках следует иметь в виду, что нижний предел допустимых перепадов должен обеспечить эффективное разрушение колонны, цементного камня и породы, а поэтому не должен быть меньше 12,0 - 14,0 МПа для 6-мм насадок и 18,0 - 20,0 МПа для насадок 4,5 и 3 мм. При очень большой прочности горных пород (σсж> 20,0 - 30,0 МПа) нижние пределы, как показывает опыт, целесообразно увеличить до 18,0 - 20,0 МПа для 6-мм насадки и 25,0 - 30,0 МПа для 4,5-и 3-мм насадки. Д ля точной установки перфоратора против нужного интервала применяют в колонне НКТ муфту-репер. Это короткий (0,5 - 0,7 м) патрубок с утолщенными стенками (15 - 20 мм), который устанавливают выше перфоратора на расстоянии одной или двух труб. После спуска колонны НКТ в нее опускают на кабеле малогабаритный геофизический индикатор, реагирующий на утолщение металла. Получая таким образом отметку муфты-репера, определяют положение перфоратора по отношению к разрезу продуктивного пласта. Однако при этом необходимо учитывать дополнительное удлинение НКТ при создании в них давления. Это удлинение, пропорциональное нагрузке, определяется формулой Гука , (4.30) где Ру - давление на устье скважины; F - площадь сечения НКТ; L - длина НКТ; Е - модуль Юнга, Па (обычно 20 •104 МПа); f - площадь сечения металла труб, м2; z - коэффициент, учитывающий трение труб о стенки обсадной колонны (принимают 1,5 - 2). Эти дополнительные удлинения могут быть значительными и достигать 1 м. При гидропескоструйной перфорации применяется то же оборудование, как и при гидроразрыве пласта. Устье скважины оборудуется стандартной арматурой типа 1АУ-700, рассчитанной на рабочее давление 70,0 МПа. Для прокачки песчано-жидкостной смеси используются насосные агрегаты, смонтированные на платформе тяжелых грузовых автомобилей 2АН-500 или 4АН-700, развивающие максимальные давления соответственно 50 и 70 МПа. При меньших давлениях используют цементировочные агрегаты, предназначенные для цементировочных работ при бурении. Число агрегатов n определяется как частное от деления общей необходимой гидравлической мощности на гидравлическую мощность одного агрегата, причем для запаса берется еще один насосный агрегат, , (4.31) где Q - расчетный суммарный расход жидкости; Pу - давление на устье скважины; qа - подача одного агрегата на расчетном режиме; Ра - давление, развиваемое агрегатом; η - коэффициент, учитывающий техническое состояние насосных агрегатов и их износ η = 0,75 - 1. Агрегат 4АН-700 снабжен дизелем мощностью 588 кВт при 2000 об/мин трехплунжерным насосом 4Р-700 с диаметрами плунжеров 100 или 120 мм. Ход плунжера 200 мм. Коробка передачи имеет четыре скорости. Характеристика агрегата приведена в табл. 4. 1. Песчано-жидкостная смесь готовится в пескосмесительном агрегате (2ПА; ЗПА и др.), который представляет собой бункер для песка емкостью 10 м3 с коническим дном. В нижней части Таблица 4.1 Характеристика насосного агрегата 4АН-700
* Примечание: к. п. д. агрегата - 0,83; коэффициент наполнения - 1; частота вращения вала двигателя - 1800 1./мин. бункера вдоль продольной оси установлен шнек. Скорость вращения шнека ступенчато изменяется от 13,5 до 267 об/мин. В соответствии с этим подача песка изменяется от 3,4 до 676 кг/мин. Кроме того, агрегат снабжен насосом 4НП (насос песковый) низкого давления для перекачки песчано-жидкостной смеси. Бункер со всем оборудованием смонтирован на шасси тяжелого автомобиля. Специальные рабочие жидкости завозят на скважину автоцистернами или приготавливают в небольших (10 - 15 м3) емкостях, установленных на салазках. В обвязку поверхностного оборудования монтируют фильтры высокого давления - шламоуловители, предупреждающие закупорку насадок крупными частицами породы. Песчано-жидкостная смесь готовится тремя способами: с повторным использованием песка и жидкости (закольцованная схема); со сбросом отработанного песка с повторным использованием жидкости; со сбросом жидкости и песка. Наиболее экономична закольцованная схема, так как при этом расходы жидкости и песка минимальные. Кроме того, при использовании специальных жидкостей (нефть, раствор кислоты, глинистый раствор и др.) не загрязняется территория. Для сравнения можно привести фактические данные, полученные на Узеньском месторождении. При работе по кольцевой схеме было израсходовано 20 м3 воды и 4,1 т песка, а при работе со сбросом воды и песка потребовалось 275 м3 воды и 14 т песка. Схема (рис. 4.12) предусматривает также необходимые операции по промывке скважины, как через колонну НКТ, так и через кольцевое пространство. Обязательным элементом схемы обвязки является установка обратных клапанов на выкидных линиях агрегатов и лубрикатора или байпаса для ввода шаров-клапанов пескоструйного аппарата. В качестве рабочей используют различные жидкости, исходя из условия ее относительной дешевизны, предотвращения ухудшения коллекторских свойств пласта и открытого фонтанирования. Состав жидкости устанавливают в лабораториях. Для целей ГПП используют воду, 5 - 6%-ный раствор ингибированной соляной кислоты, дегазированную нефть, пластовую сточную или соленую воду с ПАВами, промывочный раствор. В случае если плотность рабочей жидкости не обеспечивает глушение скважины, добавляют утяжелители: мел, бентонит и др. О бъем рабочей жидкости принимается равным 1,3 - 1,5 объема скважины при работе по замкнутому циклу. При работе со сбросом объем жидкости определяют из простого соотношения , (4.32) где qн - -принятый расход жидкости через одну насадку; n - число одновременно действующих насадок; t - продолжительность перфорации одного интервала (15 - 20 мин); .N - число перфорационных интервалов. Количество песка принимается из расчета 50 - 100 кг песка на 1 м3 жидкости. Процесс ГПП связан с работой насосных агрегатов, развивающих высокие давления, и в некоторых случаях с применением горячих жидкостей. Поэтому проведение этих работ регламентируется особыми правилами по охране труда и пожарной безопасности, несоблюдение которых может привести к очень тяжелым последствиям. Перед началом работ обязательна опрессовка всех коммуникаций на давление, в 1,5 раза превышающее рабочее. ГПП осуществляют, начиная с нижних интервалов. Пескоструйная перфорация в отличие от кумулятивной или пулевой перфорации позволяет получить каналы с чистой поверхностью и сохранить проницаемость на обнаженной поверхности пласта. Громоздкость операции, задалживание мощных технических средств и большого числа обслуживающего персонала определяют довольно высокую стоимость этого способа перфорации и сдерживают ее широкое применение по сравнению с кумулятивной перфорацией. § 5. Методы освоения нефтяных скважинОсвоение скважины - комплекс технологических операций по вызову притока и обеспечению ее продуктивности, соответствующей локальным возможностям пласта. После проводки скважины, вскрытия пласта и перфорации обсадной колонны, которую иногда называют вторичным вскрытием пласта, призабойная зона и особенно поверхность вскрытого пласта бывают, загрязнены тонкой глинистой взвесью или глинистой коркой. Кроме того, воздействие на породу ударных волн широкого диапазона частот при перфорации вызывает иногда необратимые физико-химические процессы в пограничных слоях тонкодисперсной пористой среды, размеры пор которой соизмеримы с размерами этих пограничных слоев с аномальными свойствами. В результате образуется зона с пониженной проницаемостью или с полным ее отсутствием. Цель освоения - восстановление естественной проницаемости коллектора на всем протяжении вплоть до обнаженной поверхности пласта перфорационных каналов и получения продукции скважины, соответствующей ее потенциальным возможностям. Все операции по вызову притока и освоению скважины сводятся к созданию на ее забое депрессии, т. е. давления ниже пластового. Причем в устойчивых коллекторах эта депрессия должна быть достаточно большой и достигаться быстро, в рыхлых коллекторах, наоборот, небольшой п плавной. Различают методы освоения пластов с высоким начальным давлением, когда ожидаются фонтанные проявления, н с малым давлением (на разработанных площадях), когда угрозы открытого фонтанирования нет и предполагается механизированный способ эксплуатации. В практике нефтедобычи известно много случаев открытого нерегулируемого фонтанирования скважин с длительными пожарами в результате нарушения технологии вскрытия пласта н освоения скважины. Такие явления не только выводят из строя саму скважину, но и приводят к истощению самого месторождения. Можно выделить шесть основных способов вызова притока: тартание, поршневание, замена скважинной жидкости на более легкую, компрессорный метод, прокачка газожидкостной смеси, откачка глубинными насосами. Перед освоением на устье скважины устанавливается арматура или ее часть в соответствии с применяемым методом и предлагаемым способом эксплуатации скважины. В любом случае на фланце обсадной колонны должна быть установлена задвижка высокого давления для перекрытия при необходимости ствола скважины. Тартание - это извлечение из скважины жидкости желонкой, спускаемой на тонком (16 мм) канате с помощью лебедки. Желонка изготавливается из трубы длиной 8 м, имеющей в нижней части клапан со штоком, открывающимся при упоре на шток. В верхней части желонки предусматривается скоба для прикрепления каната. Диаметр желонки обычно не превышает 0,7 диаметра обсадной колонны. За один спуск желонка выносит жидкость объемом, не превышающим 0,06 м3. Тартание - малопроизводительный, трудоемкий способ с очень ограниченными возможностями применения, так как устьевая задвижка при фонтанных проявлениях не может быть закрыта до извлечения из скважины желонки и каната. Однако возможность извлечения осадка и глинистого раствора с забоя и контроля за положением уровня жидкости в скважине дают этому способу некоторые преимущества. Поршневание. При поршневании (свабировании) поршень или сваб спускается на канате в НКТ. Поршень представляет собой трубу малого диаметра (25 - 37,5 мм) с клапаном, в нижней части открывающимся вверх. На наружной поверхности трубы (в стыках) укреплены эластичные резиновые манжеты (3 - 4 шт.), армированные проволочной сеткой. При спуске поршня под уровень жидкость перетекает через клапан в пространство над поршнем. При подъеме клапан закрывается, а манжеты, распираемые давлением столба жидкости над ними, прижимаются к стенкам НКТ и уплотняются. За один подъем поршень выносит столб жидкости, равный глубине его погружения под уровень жидкости. Глубина погружения ограничена прочностью тартального каната и обычно не превышает 75 - 150 м. Поршневание в 10 - 15 раз производительнее тартания. Устье при поршневании также остается открытым, что связано с опасностями неожиданного выброса. Замена скважинной жидкости. Замена осуществляется при спущенных в скважину НКТ и герметизированном устье, что предотвращает выбросы и фонтанные проявления. Выходящая из бурения скважина обычно заполнена глинистым раствором. Производя промывку скважины (прямую или обратную) водой или дегазированной нефтью, можно получить уменьшение забойного давления на величину , (4.33) где ρ1- плотность глинистого раствора; ρ2 - плотность промывочной жидкости; L - глубина спущенных НКТ; β - средний угол кривизны скважины. Таким способом осваиваются скважины с большим пластовым давлением Pпл > ρ2ּgּLּcosβ и при наличии коллекторов, хорошо поддающихся освоению. Как видно из формулы (4.33), при смене глинистого раствора (ρ1 = 1200 кг/м3) на нефть (ρ2 = 900 кг/м3) максимальное снижение давления составит всего лишь 25 % от давления, создаваемого столбом глинистого раствора. Этим по существу и ограничиваются возможности метода. Замена жидкости в скважине проводится с помощью насосных агрегатов, а иногда и буровых насосов. В некоторых случаях, когда по опыту освоения скважины данного месторождения имеется уверенность в безопасности, применяют дополнительно поршневание для отбора части жидкости из скважины и дальнейшего снижения забойного давления. Компрессорный способ освоения. Этот способ нашел наиболее широкое распространение при освоении фонтанных, полуфонтанных и частично механизированных скважин. В скважину спускается колонна НКТ, а устье оборудуется фонтанной арматурой. К межтрубному пространству присоединяется нагнетательный трубопровод от передвижного компрессора. При нагнетании газа жидкость в межтрубном пространстве оттесняется до башмака НКТ или до пускового отверстия в НКТ, сделанного заранее на соответствующей глубине. Газ, попадая в НКТ, разгазирует жидкость в них. В результате давление на забое сильно снижается. Регулируя расход газа (воздуха), можно изменять плотность газожидкостной смеси в трубах, а следовательно, давление на забое Pз. При Pз < Pпл начинается приток, и скважина переходит на фонтанный или газлифтный режим работы. После опробований и получения устойчивого притока скважина переводится на стационарный режим работы. Освоение ведется с непрерывным контролем параметров процесса при герметизированном устье скважины. Поэтому этот способ наиболее безопасен и позволяет быстро получить значительные депрессии на пласт, что особенно важно для эффективной очистки призабойной зоны скважины. Однако применение компрессорного способа освоения ограничено в скважинах, пробуренных в рыхлых и неустойчивых коллекторах. В некоторых районах возникает необходимость освоения скважин глубиной 4500 - 5500 м, а увеличение глубины также ограничивает использование компрессорного способа. Для более полного использования пластовой энергии, выноса жидкости с забоя и возможных промывок скважин башмак НКТ опускают до верхних перфорационных отверстий. Чтобы оттеснить уровень жидкости до башмака НКТ, особенно при больших глубинах, нужны компрессоры, развивающие давление в несколько десятков мегапаскалей. Это осложняет освоение. Поэтому в колонне труб на заранее определенной глубине делают так называемое пусковое отверстие (пусковые муфты или пусковой клапан). Опускающийся в межтрубном пространстве уровень жидкости обнажает это отверстие, нагнетаемый газ поступает через него в НКТ и разгазирует столб жидкости выше отверстия. Если давление внутри НКТ на уровне отверстия после разгазирования обозначить Р1, то забойное давление Рс будет равно , (4.34) где Н - глубина забоя (до верхних перфораций); L - глубина пускового отверстия; ρ1 - плотность скважинной жидкости; β - средний угол кривизны скважины. Забойное давление до нагнетания газа равно . (4.35) Вычитая из (4.35) (4.34), найдем депрессию на пласт . (4.36) Чем больше давление, развиваемое компрессором, тем на большей глубине L может быть предусмотрено пусковое отверстие или башмак НКТ, а следовательно, больше ΔР при прочих равных условиях. Однако с увеличением L увеличивается и Р1, которое, вообще говоря, зависит от расхода газа, но оно не может быть снижено менее чем до 7 - 10 % от гидростатического давления, определяемого первым слагаемым в (4.36). Поэтому для освоения глубоких скважин требуются компрессоры, развивающие высокое давление. В момент оттеснения уровня жидкости к башмаку НКТ или пусковому отверстию давление в межтрубном пространстве, а следовательно, и на выходе компрессора максимально. По мере разгазирования жидкости в НКТ давление pi (внутри НКТ на уровне отверстия) будет снижаться и давление на забой падать. Поэтому процесс освоения рассчитывают на этот, так сказать, критический момент. Освоение скважин закачкой газированной жидкости. Освоение скважин путем закачки газированной жидкости заключается в том, что вместо чистого газа или воздуха в межтрубное пространство закачивается смесь газа с жидкостью (обычно вода или нефть). Плотность такой газожидкостной смеси зависит от соотношения расходов закачиваемых газа и жидкости. Это позволяет регулировать параметры процесса освоения. Поскольку плотность газожидкостной смеси больше плотности чистого газа, то это позволяет осваивать более глубокие скважины компрессорами, создающими меньшее давление. Для такого освоения к скважине подвозится передвижной компрессор, насосный агрегат, создающий по меньшей мере такое же давление, как и компрессор, емкости для жидкости и смеситель для диспергирования газа в нагнетаемой жидкости. При нагнетании газожидкостная смесь движется сверху вниз при непрерывно изменяющихся давлении и температуре. Процесс этот сложный. Однако можно записать уравнение баланса давлений с усредненными параметрами смеси и расхода. При закачке газожидкостной смеси (ГЖС) на пузырьки воздуха действует архимедова сила, под действием которой они всплывают в потоке жидкости. Скорость всплытия зависит от размеров газовых пузырьков, вязкости жидкости и разности плотностей: чем мельче пузырьки, тем меньше скорость их всплытия. Обычно эта скорость относительно жидкости составляет 0,3 - 0,5 м/с. Поэтому скорость движения жидкости вниз должна быть больше скорости всплытия пузырьков газа. Иначе газ не достигнет башмака НКТ и давление на забое не снизится. Для создания достаточно больших скоростей жидкости необходимы большие расходы. Поэтому при закачке ГЖС предпочтительно это делать не через кольцевое пространство, а через НКТ, так как малое их сечение позволяет получить достаточно большие нисходящие скорости при умеренных объемных расходах жидкости. Считается, что для успешного осуществления процесса достаточно иметь нисходящую скорость жидкости порядка 0,8 - 1 м/с. Для выноса с забоя тяжелых осадков (глинистого раствора, утяжелителя и частиц породы) обычно применяется обратная промывка. Поэтому закачка ГЖС, которая осуществляется после промывки, также производится по схеме обратной промывки без изменения обвязки скважины. Запишем баланс давлений при закачке ГЖС в кольцевое пространство в тот момент, когда давление на насосе будет максимально. Рассмотрим случай, когда НКТ до башмака заполнены жидкостью, а затрубное пространство заполнено ГЖС; причем обе системы движутся со скоростями, соответствующими темпу нагнетания ГЖС. Обозначим: ат - удельные потери на трение в НКТ при движении по ним жидкости, выраженные в м столба жидкости; ак - удельные потери на трение в кольцевом пространстве, выраженные в м столба ГЖС. При обратной промывке давление у башмака НКТ со стороны кольцевого пространства равно . (4.37) Давление у башмака со стороны НКТ равно , (4.38) где ρсм - среднеинтегральное значение плотности ГЖС в кольцевом пространстве; ρж - плотность скважинной жидкости; L - длина НКТ; β - средний угол отклонения ствола скважины от вертикали; Рк - давление нагнетания на устье скважины в кольцевом пространстве; Ру - противодавление на выкиде; g - ускорение свободного падения. Очевидно, Рт = Рсм, поэтому, приравнивая (4.37) и (4.38) и решая относительно L, получим . (4 .39) Формула (4.39) определяет предельную глубину спуска башмака НКТ при заданных параметрах процесса (ρж, ρсм, Рк, Ру, ат, ак). Решая формулу (4.39) относительно Рк, получим давление на устье скважины, необходимое для закачки ГЖС при заданной глубине L спуска НКТ: . (4.40) Величины Ру, L, ρж, β обычно известны. Величины ат, ак и ρсм определяются: ат - по обычным формулам трубной гидравлики, а ак и ρсм - сложными вычислениями с использованием ЭВМ для численного интегрирования дифференциального уравнения движения ГЖС. При освоении скважины газированной жидкостью к устью присоединяется через смеситель линия от насосного агрегата, ко второму отводу смесителя - выкидная линия компрессора. Сначала запускается насос и устанавливается циркуляция. Скважинная жидкость (глинистый раствор) сбрасывается в земляной амбар или другую емкость. При появлении на устье нагнетаемой чистой жидкости (вода, нефть) запускается компрессор, и сжатый газ подается в смеситель для образования тонкодисперсной ГЖС. По мере замещения жидкости газожидкостной смесью давление нагнетания увеличивается и достигает максимума, когда ГЖС подойдет к башмаку НКТ. При попадании ГЖС в НКТ давление нагнетания снижается. Освоение скважиными насосами. На истощенных месторождениях с низким пластовым давлением, когда не ожидаются фонтанные проявления, скважины могут быть освоены откачкой из них жидкости скважинными насосами (ШСН или ПЦЭН), спускаемыми на проектную глубину в соответствии с предполагаемыми дебитом и динамическим уровнем. При откачке из скважины жидкости насосами забойное давление уменьшается, пока не достигнет величины Рс < Рпл, при которой устанавливается приток из пласта. Такой метод эффективен в тех случаях, когда по опыту известно, что скважина не нуждается в глубокой и длительной депрессии для очистки призабойной зоны от раствора и разрушения глинистой корки. Перед спуском насоса скважина промывается до забоя водой или лучше нефтью, что вызывает необходимость подвоза к скважине промывочной жидкости - нефти и размещения насосного агрегата и емкости. При промывке водой в зимних условиях возникает проблема подогрева жидкости для предотвращения замерзания. В заключение необходимо отметить, что в различных нефтяных районах вырабатывались и другие практические приемы освоения скважин в соответствии с особенностями того или иного месторождения. В качестве примера можно указать и на такой прием, когда при компрессорном методе в затрубное пространство, заполненное нагнетаемым воздухом, подкачивают некоторое количество воды для увеличения плотности смеси и снижения давления на компрессоре. Это позволяет осуществить продавку скважины при большей глубине спуска НКТ. § 6 Передвижные компрессорные установкиДля освоения скважин и вызова притока используются различные передвижные компрессорные установки. Широкий диапазон климатических и технологических условий потребовал создания передвижных компрессорных установок различных конструкций. Наиболее распространена передвижная компрессорная установка УКП-80. Она смонтирована на гусеничной тележке ТГТ-20 «Восток» и имеет на общей раме дизель В2-300, редуктор и компрессор КП-80 с подачей 8 м3/мин при стандартных условиях. Техническая характеристика УКП-80 Рабочее давление, Мпа ..................... 8 Подача, м3/мин ………........................ 8 Расход топлива, кг/ч .........…............. 43 Общая масса установки, кг..............… 16 100 Длина, мм ..........................…………… 6615 Высота, мм .........................………….. 2870 Ширина, мм ........................……….… 2650 Мощность дизеля, кВт ....................…. 173 УКП-80 транспортируется к скважинам трактором-тягачом. Для облегчения транспортировки УКП-80 к скважинам ее монтируют на шасси тяжелых грузовиков КрАЗ-257. Новая станция КС-16/100 смонтирована на трехосном автоприцепе, закрытом цельнометаллическим кожухом. Общая масса станции 23 т. Станция имеет дизель 1Д12Б, редуктор, трансмиссию и четырехступенчатый компрессор с подачей 16 м3/мин при давлении 10 МПа, теплозвукоизолированную кабину для машиниста, в которую вынесены приборы для контроля и управления. Эта станция расширяет возможности освоения скважин, так как имеет в 2 раза большую подачу и рассчитана на повышенное давление. Однако для условий севера ее использование затруднено из-за заболоченности территорий и отсутствия дорог. Существенным достижением в этой области явилось использование относительно легких и компактных свободнопоршневых дизелей-компрессоров ДК-10. Эти машины не имеют шатунно-кривошипного механизма, поэтому лучше уравновешены. Свободнопоршневой дизель-компрессор (СПДК) имеет двухтактный дизель и четырехступенчатый поршневой компрессор со свободными поршнями, движущимися в противоположных направлениях с одинаковой длиной хода. Он выполнен в одном корпусе, имеет общую для дизеля и компрессора пусковую систему, системы смазки и охлаждения. Поршневые группы движутся возвратно-поступательно в противоположных направлениях. В машине отсутствуют передаточные механизмы (редуктор, трансмиссия), нет маховиков, муфт сцепления и т. п. Это и обусловливает малую массу, компактность и высокий к. п. д. На базе дизелей-компрессоров ДК-10 создан передвижной агрегат АК-7/200, состоящий из двух компрессоров ДК-10, смонтированных под кожухом на металлических санях. Передвижной агрегат АК-7/200 может транспортироваться на внешней подвеске вертолета. Масса агрегата 6,8 т при подаче 7 м3/мин и давлении 20 МПа. Температура воздуха на выходе из последней ступени 35ºС. Расход топлива 34 кг/ч. Запуск производится от баллонов сжатым воздухом без предварительного подогрева. Имеется изолированная кабина для машиниста. Это позволило использовать агрегат в северных условиях и на заболоченных территориях Кроме того, имеется аналогичный агрегат (дизель-компрессорная станция ДКС 7/100 А), смонтированный на шасси автомобиля высокой проходимости КрАЗ-2555. Для условий северных нефтяных месторождений создан также агрегат ДКС-3,5/200 Тп, состоящий из одного компрессора ДК-10, смонтированного на плавающем гусеничном транспортере ГТ-Т. Подача его 3,5 м3/мин, давление 20 МПа, расход топлива 17 кг/ч. Для освоения очень глубоких скважин используют агрегат ДКС-1,7/400, состоящий из одного дизеля-компрессора ДК-10 с подачей 1,7 м3/мин и развивающий давление 40 МПа. Он смонтирован на металлических санях. Его масса 3,5 т. Однако малые подачи сильно увеличивают продолжительность освоения скважин. § 7. Освоение нагнетательных скважинЕсли целью освоения эксплуатационной скважины является получение возможно большего коэффициента продуктивности при данных параметрах пласта, то цель освоения нагнетательной скважины - получение возможно большего коэффициента поглощения или приемистости, который можно определить как отношение изменения количества нагнетаемой воды к соответствующему изменению давления нагнетания , или в дифференциальном виде . При больших Кп возможна закачка в пласт расчетных количеств воды при относительно низких давлениях нагнетания. Это приводит к сокращению энергетических затрат на поддержание пластового давления и к некоторому сокращению необходимого числа нагнетательных скважин. Нагнетательные скважины бурятся в водонасыщенной (например, законтурные) и в нефтенасыщенной (скважины разрезающих рядов или внутриконтурные) частях пласта. Методы их освоения различны. Если первые осваиваются сразу под нагнетание воды, то вторые обычно предварительно эксплуатируются на нефть для получения самой нефти, а также для понижения пластового давления в зоне скважины. Если осваивается под нагнетание внутрпконтурный ряд нагнетательных скважин, то они осваиваются через одну, т. е. одна скважина ряда используется под нагнетание воды, а соседняя эксплуатируется как нефтяная с максимально возможным отбором жидкости. Следующая скважина также осваивается под нагнетание, а соседняя - как эксплуатационная и т. д. Максимально возможный отбор нефти из скважин нагнетательного ряда производится до тех пор, пока в их продукции появится пресная вода, нагнетаемая в соседние водяные скважины. Такой порядок освоения позволяет сформировать в нефтенасыщенной части пласта линейный фронт нагнетаемой воды, вытесняющий нефть к эксплуатационным рядам скважин. По степени трудности освоения нагнетательные скважины можно условно разделить на три группы. I группа. Скважины, пробуренные в монолитные сравнительно однородные песчаники с хорошей проницаемостью [(0,5 - 0,7)10-12 м2 с толщиной пласта более 10 м. Они осваиваются простейшими способами, например, после тщательной промывки (допустимое КВЧ порядка 3 - 5 мг/л) последующим интенсивным поршневанием для создания чистых дренажных каналов в призабойной части пласта. Такие скважины обычно имеют высокие удельные коэффициенты приемистости (более 0,25 м3/(сут МПа) на 1 м толщины пласта) и работают с высокими устойчивыми расходами, превышающими 700 - 1000 м3сут. II группа. Скважины, вскрывающие пласты с глинистыми прослоями, песчаники которых имеют пониженную проницаемость. Общая толщина песчаных прослоев обычно составляет от 6 до 12м. Средний удельный коэффициент приемистости таких скважин примерно в 2 раза меньше, чем у скважин I группы. Скважины II группы трудно осваиваемые и требуют специальных методов освоения или целого комплекса таких методов. Характеризуются затуханием поглотительной способности и периодическими остановками для мероприятий по восстановлению приемистости. III группа. Скважины, вскрывающие пласты с глинистыми прослоями, чередующимися с проницаемыми песчаниками с малой суммарной толщиной и низкой проницаемостью. Удельные коэффициенты приемистости составляют менее 0,1 м3/(сут МПа). Освоение таких скважин под нагнетание затягивается на несколько месяцев и требует применения самых эффективных методов воздействия на их призабойную зону, как, например, поинтервального гидроразрыва пласта, кислотных обработок и очень больших давлений нагнетания, соизмеримых с горным. Приемистость скважин III группы быстро затухает и через 2 - 3 мес в них снова проводятся работы по ее восстановлению. Для таких скважин особенно жесткими становятся требования к закачиваемой воде, которая не должна содержать взвесь и гидроокись железа. При освоении нагнетательных скважин используют следующие технические приемы. 1. Интенсивные промывки прямые и обратные с расходом 1200 - 1500 м3/сут до минимально возможного и стабильного содержания КВЧ в обратном потоке. Их продолжительность обычно 1 - 3 сут. Воду для промывки берут из нагнетательного водовода или закачивают насосным агрегатом по закольцованной схеме с обязательным предварительным отстоем воды в специальных емкостях. При этом тщательно контролируются выходящая и нагнетаемая воды на содержание КВЧ. Вообще скважины промывают после всех операций, проводимых для увеличения их поглотительной способности. 2. Интенсивный дренаж скважины для очистки призабойной зоны. Дренаж осуществляется различными методами. а) Поршневанием при максимально возможной глубине спуска поршня, при этом необходимо устанавливать пакер, изолирующий кольцевое пространство. В последнем случае удается получить большие депрессии на пласт (до 12 МПа). б) Компрессорным способом. Жидкость из скважины отбирается с помощью передвижного компрессора при условии, что последний позволяет продавить жидкость до башмака НКТ. Трубы в этом случае должны быть спущены до верхних дыр фильтра. Сверление в НКТ пускового отверстия для снижения необходимого давления компрессора в данном случае нежелательно, так как при последующем нагнетании воды через это отверстие давление будет передаваться в затрубное пространство. Использование пускового отверстия возможно только лишь в период интенсивного дренирования. Дренирование производится до стабилизации КВЧ при постоянном контроле за его содержанием. в) Насосным способом (ПЦЭН) до стабилизации КВЧ. г) Самоизливом при интенсивном водопритоке, т. е. сбросом воды из скважины в канализацию. Такая операция более эффективна при многократных кратковременных изливах, когда скважина периодически в течение 6 - 15 мин работает на излив с максимальной производительностью. Такую операцию повторяют до стабилизации КВЧ. К такому способу целесообразно прибегать в тех случаях, когда дебит скважины превышает несколько десятков кубометров в сутки. Кратковременными изливами удается в 4 - 6 раз сократить расход воды по сравнению с непрерывным самоизливом для достижения стабильного содержания КВЧ. 3. Солянокислотные обработки призабойных зон скважин, вскрывших карбонатные пласты или пласты, содержащие карбонатный цементирующий материал, а также для растворения окалины. Для этого в пласт закачивают 0,8 - 1,5 м3 на 1 м толщины пласта 10 - 15%-ного раствора ингибированной соляной кислоты и оставляют скважину на сутки. Затем после дренирования и промывки скважину переводят под нагнетание. 4. Гидравлический разрыв пласта (ГРП). Скважины III группы обычно удается освоить только после ГРП и ряда последующих операций (дренаж, промывка). Однако в горизонтах, представленных чередованием глин и песчаников, ГРП не эффективен, так как трещины образуются в одном наиболее проницаемом прослое. Лучшие результаты получаются при поинтервальном ГРП, т. е. гидроразрыве каждого прослоя. При этом необходимо применение двух пакеров, спускаемых на НКТ II устанавливаемых выше и ниже намечаемого для обработки интервала. 5. Промывка скважины НКТ и водоводов водопесчаной смесью. Часто малоэффективность освоения нагнетательных скважин или малые приемистости являются результатом быстрого загрязнения поверхности пласта окалиной и твердыми частицами, приносимыми водой из водоводов. Для их очистки водоводы и скважины промывают водопесчаной смесью (50 кг песка на 1 м3 воды) с помощью цементировочных агрегатов. При таких промывках из скважины или водовода выходит густая, черпая водопесчаная смесь с ржавчиной, по через 20 - 30 мин, в зависимости от интенсивности прокачки, вода светлеет, и содержание в ней КВЧ и железа уменьшается до следов. После таких промывок уменьшаются почти наполовину потери на трение в водоводах. 6. Нагнетание в скважину воды в течение нескольких часов под высоким давлением, превышающим нормальное давление нагнетания, в тех случаях, если коллектор имеет некоторую естественную трещиноватость. Для этого к скважине подключают три-четыре насосных агрегата и создают дополнительное давление, при котором естественные трещины в пласте расширяются и поглотительная способность скважины резко возрастает. Такая операция представляет собой упрощенный вариант ГРП» после которого в пласте происходит необратимый процесс раскрытия трещин, через которые глубоко в пласт прогоняются взвесь и глинистые осадки. 7. Предварительная обработка горячей водой или нефтью нефтяных скважин, предназначенных под нагнетание, для удаления парафиновых и смолистых накоплений в призабойных зонах. Подогрев осуществляют от паровых передвижных установок, смонтированных на автомобильном ходу (ППУ). Расход нагнетаемой воды обычно увеличивается быстрее, чем растет давление нагнетания. Другими словами, коэффициент поглотительной способности увеличивается с ростом давления нагнетания. Глубинные исследования расходомерами показали, что при этом возрастает и интервал поглощения, а следовательно, и охват пласта процессом вытеснения по толщине в результате увеличения раскрытости естественных трещин и присоединения дополнительных прослоев пласта к процессу поглощения жидкости. Для расширения интервала поглощения иногда закачивают в скважину 2 - 5 м3 известковой суспензии концентрации 15 кг СаО на 1 м3 воды с последующим добавлением сульфит-спиртовой барды (ССБ) вязкостью примерно 500·10-3 Па-с для уплотнения поглощающего прослоя. При последующем увеличении давления нагнетания таким приемом удается расширить интервал поглощения и выравнять или расширить профиль приемистости. При получении отрицательных результатов закачанная известковая суспензия растворяется слабым раствором НСL и последующей промывкой скважины. |