Главная страница
Навигация по странице:

  • РЕФЕРАТ Тема

  • 1.1 Первые прообразы роботов

  • 1.2 Роботы Средневековья

  • 2 Состав и структура Робота

  • 3 Классификация промышленных роботов

  • 4 Специальные краны роботы

  • 5 Манипуляторы и их устройство

  • 6.Основные этапы проектирования манипуляторов и их содержание

  • Реферат Алтынбек 2 2. История развития современной робототехники. Классификация промышленных роботов. Манипуляторы


    Скачать 194.14 Kb.
    НазваниеИстория развития современной робототехники. Классификация промышленных роботов. Манипуляторы
    Дата28.03.2022
    Размер194.14 Kb.
    Формат файлаdocx
    Имя файлаРеферат Алтынбек 2 2.docx
    ТипРеферат
    #421225

    Западно-Казахстанский аграрно-технический университет имени Жангир хана

    Высшая школа Машиностроения

    РЕФЕРАТ

    Тема: История развития современной робототехники.Классификация промышленных роботов.Манипуляторы.

    Выполнил:Умаров А А

    Проверила:Сатыбаева Н.А

    Г.Уральск

    2022 год

    Содержание:

    Введение

    1.История развития и современное состояние робототехники……………….4

    1.1 Первые прообразы роботов………………………………………………..5

    1.2 Роботы Средневековья……………………………………………………..6

    2.Состав и структура робота…………………………………………………….9

    3.Классификация промышленных роботов……………………………………12

    4.Специальные краны-роботы………………………………………………….16

    5.Манипуляторы и их устроиство………………………………………………18

    5.1 Принцип работы манипулятора…………………………………………..20

    5.2 Манипуляторы в жизни…………………………………………………….22

    6.Основные этапы проектирования манипуляторов и их содержание……….23

    6 Усторойство промышленного робота………………………………………..24

    Заключение……………………………………………………………………….25

    Список литературы………………………………………………………………26


    Введение

    По мере развития машиностроения прежде всего автоматизировались наиболее сложные и трудоемкие операции, связанные с изменениями формы и размеров изделий. Загрузка и разгрузка технологического оборудования осуществлялись обычно вручную или простейшими средствами механизации. В последнее время в связи с задачами комплексной автоматизации производства и освоения новых областей деятельности человека (под водой, в опасных средах, в космосе) большое внимание уделяется автоматизации операций манипулирования — перемещения и ориентации изделий и инструмента.

    Манипуляторы при свободном перемещении рабочего органа представляют собой пространственный механизм с разомкнутой кинематической цепью. Его звенья связаны кинематическими парами пятого класса (вращательными или поступательными), оснащенными приводами. Каждая такая кинематическая пара с приводом обеспечивает одну степень подвижности манипулятора. Число, вид и взаимное расположение степеней подвижности определяют манипуляционные возможности устройства.

    Манипуляторы оснащаются захватными устройствами, предназначенными для захватывания и удержания объекта манипулирования — обрабатываемого изделия или обрабатывающего инструмента. Захватное устройство и инструмент называют рабочим органом манипулятора. Захватное устройство, в котором захватывание и удержание производятся относительным перемещением его частей, называется схватом.

    .

    1 История развития и современное состояние робоотехники

    В массовом сознании слово «робот» ассоциируется в основном с научными достижениями и идеями 20-21 веков. Особенно часто этот термин мало разбирающийся в технических областях человек встречает в произведениях научной фантастики – романах Айзека Азимова, сериях фильмов «Терминатор», «Трансформеры» и т.д. Более продвинутые из них еще могут припомнить советские «Луноходы», промышленные или медицинские аппараты, зверо- или человекоподобных роботов из рекламных роликов компании Boston Dynamics. Однако, как и многие другие великие идеи человечества, концепция автоматизированных механизмов, способных самостоятельно выполнять различные операции, появилась гораздо раньше и прошла длительный путь своего развития.

    Прежде, чем говорить о том, какими были самые первые роботы, следует определить, что именно подразумевается под данным понятием. Это имеет важное значение для понимания развития данной технологии и ее уникальности. Первое появление слова «робот» относится к 1920 году, когда чешский писатель Карел Чапек употребил его в фантастической пьесе «Rossumovi univerzální roboti (R.U.R)». Там оно обозначало искусственно созданного человека, чей труд использовался на тяжелых и опасных производствах взамен человеческого (robota в переводе с чешского – каторга). И хотя в этом произведении роботы изготавливались на фабриках из выращенных органических тканей, само понятие впоследствии было популяризировано именно в отношении механических устройств.

    Робота следует отличать от простых механизмов и автоматов. Это устройство обладает способностью к более тесному и комплексному взаимодействию с оператором и внешней средой. Если простой автоматический механизм при выполнении определенного действия слепо следует заранее заложенному в нем алгоритму, то робот способен воспринимать внешние сигналы и в соответствии с ними адаптировать свои действия. Таким образом его взаимодействие с внешней средой становится более гибким, точным и универсальным.
    1.1 Первые прообразы роботов

    Однако история создания роботов тесно переплетается с развитием механики и логически из нее проистекает. Поэтому для ее понимания необходимо углубиться на несколько веков назад, а именно в эпоху античности, когда процветала колыбель наук – Древняя Греция. В этой стране появились автоматические устройства, созданные для выполнения практических задач и развлечения. В качестве примера можно привести описанную Филоном Византийским механическую женщину-слугу, которая наливала из кувшина вино во вставленный в ее руку стакан. Древнегреческий математик и изобретатель Архит Тарентский еще в 5 веке до н. э. изобрел деревянного голубя, который запускался в небо с помощью паровой катапульты. Многие историки технологий считают, что первый робот в истории был создан именно в этот момент, хотя корректнее считать его прототипом крылатой ракеты или реактивного снаряда.

    Еще более сложное и грандиозное автоматическое устройство существовало в научной столице античного мира – великом городе Александрия. На расположенном здесь в начале нашей эры знаменитом Фаросском маяке были размещены величественные женские фигуры. Они могли указывать направление ветра и движение небесных светил (Солнца и Луны), отсчитывать время и даже сигнализировать морякам об опасности во время шторма или тумана с помощью громкого трубного звука. В древнегреческом городе Сиракузы на острове Сицилия жил великий греческий изобретатель и ученый Архимед, также прославившийся созданием автоматических механизмов. В частности, ему приписывается создание первого прообраза настоящего боевого робота. Устройство под названием «коготь», устанавливаемое на крепостной стене, захватывало длинным крюком осаждавшие город римские корабли, поднимало их в воздух и переворачивало, стряхивая экипаж за борт.

    Другой гениальный грек, Герон Александрийский, изобрел первый в истории программируемый автомат. Тележка, вывозившая на сцену механизированные марионетки, управлялась с помощью веревки и колышков. Изменяя положение последних, Герон регулировал наматывание тросиков на независимые оси повозки, тем самым задавая ей траекторию движения. Этот принцип в чем-то похож на перфорированные ленты и карты – средства записи и хранения информации, используемые в автоматических станках и ЭВМ вплоть до 80-х годов ХХ века.

    История робототехники была бы неполной без достижений других государств того времени. Так, еще в конце 2 тысячелетия до н. э., задолго до древнегреческих механизмов, в Древнем Египте жрецы изготовили статую, которая поднятием руки указывала на наследника фараона во время религиозных церемоний. А в Китае примерно в это же время местные мастера создавали первые прототипы роботов, приводимые в действие силой пороховых взрывов. Великий мудрец Лао-Цзы упоминал о механическом человеке, разработанном для императора на рубеже 1 и 2 тысячелетия до н. э.
    1.2 Роботы Средневековья
    Вопреки распространенному мнению, Средние века не были эпохой всеобщего упадка и технологического регресса. Наука, в том числе механика, хотя и с некоторой задержкой в первые века после падения античных держав, продолжала свое развитие. Удивительно, но многие сложные устройства появились на свет благодаря силе, которая в массовом сознании ассоциируется только с мракобесием – а именно Церкви. В те времена католические монастыри были одним из центров научной и инженерной мысли. В частности, легенды приписывают виднейшему ученому и теологу Альберту Великому создание «механической служанки», которая умела самостоятельно передвигаться и даже воспроизводить речь. Задокументированным, и, следовательно, более достоверным, выглядит свидетельство средневекового архитектора Виллара де Онекура (13 век н. э.), который в своем труде описал зооморфные механизмы, а также фигуру ангела, поворачивающуюся вслед за движением солнца. К тому же 13 веку относится увеселительный сад в поместье графа Роберта II д’Артуа, заполненный автоматическими обезьянами, птицами и механизированными фонтанами.Большое развитие механика получила в это время и на Востоке. Византия, практически не затронутая потрясениями Раннего Средневековья, славилась автоматонами, встречавшими иностранных гостей в императорском дворце. Согласно свидетельствам, около царского трона были расположены два металлических льва, которые умели реветь и бить хвостами, а в кронах деревьев находились механизированные птицы, певшие и щебетавшие на разные голоса. В мусульманских странах того времени механика и математика вышли на качественно новый уровень, благодаря чему их мастера создавали удивительные устройства. Так, братья Бану Муса в 9 веке н. э. изобрели искусственного флейтиста, а видный ученый того времени Али ибн Халаф аль-Маради, живший в 11 веке, в своей «Книге тайн» описал около 30 сложных автоматонов.

    Здесь же следует упомянуть и легенду о «железном мужике», созданном придворными мастерами Ивана Грозного. Согласно ей, человекоподобный механический слуга при дворе русского царя подавал ему чашу с вином и кафтан, подметал пол, кланялся гостям и даже «побивал медведя». Звучит фантастично, но следует учитывать, что эта легенда основана на письмах голландского купца Йохана Вема – человека крайне прагматичного и не склонного к фантазиям.

    Леонардо да Винчи, будучи гением инженерной мысли, в своих зарисовках предложил схемы самых разных механизмов, одним из которых является фигура закованного в латы рыцаря, которая могла двигать руками и шеей, садиться и даже открывать рот. Собранный образец демонстрировался изобретателем при дворе Людовика Сфорца, герцога Миланского, в 1495 году. В 20 веке по сохранившимся чертежам была воспроизведена точная и функциональная копия этого устройства, сегодня хранящаяся в Миланском музее.

    2 Состав и структура Робота

    Согласно справочной литературе робот — это автоматическая машина, включающая перепрограммируемое устройство управления и другие технические средства, обеспечивающие выполнение тех или иных действий, свойственных человеку в процессе его трудовой деятельности .

    Наиболее совершенный робот способен самостоятельно решать задачи самоуправления, адаптации к условиям внешней среды и выполнять комплекс трудовых воздействий. Общим признаком роботов является возможность быстрой переналадки для автоматического выполнения различных действий, предусмотренных программой.

    Общепринятого определения промышленного робота в настоящее время не существует. В Японии, например, под промышленными роботами понимают автоматы с изменяемой программой, используемые для автоматизации ручных операций. По этому определению промышленный робот, как и человек, наделен тремя возможностями: физическими, функциональными и умственными. При этом под функциональными возможностями понимают приспособляемость (или универсальность), способность передвигаться в пространстве, а под умственными возможностями — способности ощущения и восприятия, память и логику, а также способность к обучению. Приведем определения промышленного робота, принятые в нашей стране.

    Промышленные роботы создают условия для качественного скачка в автоматизации путем организации комплексно-автоматизированных участков и цехов. На основе робототехнических устройств можно объединить технологическое оборудование в координировано работающие комплексы различного уровня. Такие комплексы обеспечивают оптимальную структуру технологических процессов в широком диапазоне серийности изделий. Открываются новые возможности эффективной организации серийного производства на основе комплексной автоматизации материальных и информационных потоков с использованием промышленных роботов и средств вычислительной техники. Такая организационная форма комплексной автоматизации получила название интегрированной производственной системы. Особенности серийного производства, связанные с быстрой сменяемостью моделей изделий, требуют создания систем автоматизации, обладающих технологической гибкостью, т. е. возможностью переналадки оборудования в пределах научно обоснованного типоразмерного ряда. Робототехнические устройства составляют основу таких систем автоматизации, которые получили название гибкой производственной системы. Гибкая производственная система (ГПС) может быть составлена из модулей двух типов: модуля в виде роботизированного технического комплекса (РТК), в котором робот обеспечивает обслуживание основного технологического оборудования (загрузка-разгрузка станка), и модуля в виде роботизированного производственного комплекса (РПК), в котором робот осуществляет основные операции технологического процесса (сборку, сварку, окраску, напыление и т. д.).

    На рис. 1.2 показан общий вид РТК для обработки деталей типа «тела вращения» с обслуживающим роботом портального типа.



    Рис. 1.2. Общий вид РТК для обработки деталей типа «тела вращения» с обслуживающим роботом портального типа:

    1 — кассета; 2 — транспортер; 3 — робот; 4 — станок

    Загрузка станка 4 заготовками производится роботом 3 из кассеты 1, которая доставляется к станку транспортером 2 напольного типа. Детали выгружаются также в кассету, которая отводится тем же транспортером-накопителем.

    3 Классификация промышленных роботов
    Классификация промышленных роботов имеет особенность, которая состоит в научно обоснованном выборе признаков и выделении соответствующих им классификационных подразделений. Рассмотрим их.

    1. Характер выполняемых промышленными роботами функций. По этому признаку различают роботы, непосредственно участвующие в технологическом процессе, и роботы, предназначаемые для выполнения транспортно-складских, погрузочно-разгрузочных и других вспомогательных операций.

    2. Объем и разнообразие работ, которые могут ими осуществляться. Поэтому признаку промышленные роботы подразделяют на универсальные, специализированные и специальные.

    Универсальные промышленные роботы обладают широкими технологическими возможностями, что предопределяет их количественное превосходство над специальными и специализированными. Специальные роботы рассчитаны на работу (подъем, перемещение, опускание и т.д.) с одинаковыми деталями или выполнение определенной технологической операции, а специализированные - на работу с конструктивно и технологически сходными деталями или выполнение однотипных технологических операций (процессов).

    3. Метод управления, по которому различают роботы с ручным, копирующим и кнопочным управлением.

    4. Грузоподъемность. В зависимости от нее роботы бывают сверхлегкие - на 0,1…1,0 кг; легкие - на 1,6…10 кг; средние - на 16…100 кг; тяжелые - на 160…1000 кг и сверхтяжелые (>1000 кг).

    5. Класс точности позиционирования или воспроизведения траектории, согласно которому выделяют роботы с относительной погрешностью позиционирования или воспроизведения траектории, в %: до 0,01; >0,01 до 0,05; >0,05 до 0,1 и >0,1.

    6. Степень их технического совершенства. По этому признаку различают роботы первого, второго и третьего поколений.

    Роботы первого поколения (с программным управлением) применяют для: обслуживания станков, прессов, печей, сварочных установок и машин; выполнения основных технологических процессов (гибки, вальцовки, резки, сборки, сварки); погрузочно-разгрузочных и складских работ. Роботы второго поколения отличаются от роботов первого наличием чувствительных устройств (осязание, телевизионное зрение), имеют более сложное управляющее устройство. Роботы третьего поколения (интегральные роботы) в отличие от роботов второго поколения обрабатывают информацию, получаемую от органов чувств. Эти роботы применяют для работ, требующих распознавания образов (работа по чертежу), а также протекающих в сложных и изменяющихся условиях.

    7. По типу информационной системы их подразделяют на роботы: с поисковой системой; отражением усилий; искусственным зрением; комбинированной информационной системой. Применяют эти роботы для: сборки и монтажа по монтажной схеме; выполнения работ, требующих информации о внешнем виде и свойствах предметов (трещины, загрязненность, цвет и т.д.); работ с неориентированными деталями произвольной формы.

    В зависимости от назначения промышленных роботов признаками классификации могут быть тип привода рабочих органов, тип системы управления, число манипуляторов (два - четыре и более), степень гибкости программы (уровень адаптации), тип рабочей зоны, способ задания режима работы, тип информационной системы, тип исполнения, быстродействие и т.д.

    Всего в применяемых классификациях промышленных роботов используют до 20 признаков, а максимальное число признаков в одной классификации 9-12. Практика показала, что такое число признаков классификации промышленных роботов сравнительно полно и достоверно характеризует их технические и эксплуатационные особенности.

    Поэтому недостатки существующих классификаций промышленных роботов кроются не в количественном составе признаков, а в отсутствие единой научно обоснованной системы выбора признаков, последовательности и порядка включения их в классификацию, формирования соответствующих им классификационных подразделений (классов, подклассов, групп и других подразделений промышленных роботов), установления характера и форм связи между техническими параметрами и организационно-экономическими показателями представителей классификационных подразделений.

    Отсутствие такой системы привело к тому, что почти все при меняемые классификации сводятся к обычному группированию промышленных роботов по некоторому числу при знаков без выделения по ним классификационных подразделений и без систематизации и анализа технических параметров и экономических показателей типовых прогрессивных промышленных роботов. Подобное группирование промышленных роботов ограничивает возможности классификации и принижает важную роль ее в совершенствовании производства сварных конструкций.

    На современном этапе развития сварочной робототехники система классификации промышленных роботов должна удовлетворять следующим требованиям:

    - она должна при минимальном числе признаков комплексно и наиболее полно характеризовать конструктивно-технологические, эксплуатационные особенности промышленных роботов и экономические показатели, достигаемые при их применении;

    - признаки классификации промышленных роботов должны отражать не только достигнутые результаты, но и перспективы развития роботов. К таким признакам может быть отнесен тип системы управления робота, показывающий, с одной стороны, уровень конструктивного совершенства (автоматизации) и эксплуатационные возможности их в различных производственных условиях;

    - перспективы развития роботов по рассматриваемому направлению; они состоят, например, в создании высокоразвитых адаптивных систем для контактной и дуговой сварки; систем управления производственными комплексами, включая основное технологическое оборудование и промышленные роботы первого поколения; в разработке алгоритма адаптивного группового управления роботами второго поколения;

    - характеристика классификационных подразделений, выделенных по первому признаку классификации, должна включать в себя типовые операции (процессы), на которых применение роботов наиболее эффективно;

    - в перечень классификационных подразделений по второму признаку классификации должны входить прогрессивные виды робототехники, отражающие перспективу повышения уровня механизации и автоматизации производства сварных конструкций;

    - признаки классификации промышленных роботов, классификационные подразделения и основные технические и организационно-экономические характеристики их должны быть обозначены индексами, которые используются в планово-учетной документации;

    - признаки классификации промышленных роботов и классификационные подразделения должны отражать научно-технические достижения и передовой опыт в сварочной робототехнике.

    - характеристика классификационных подразделений, выделенных по первому признаку классификации, должна включать в себя типовые операции (процессы), на которых применение роботов наиболее эффективно;

    4 Специальные краны роботы

    Современные промышленные роботы как универсальные машины для манипулирования различными грузами имеют "пока ограниченную грузоподъемность: для 80% она не превышает 40 кг, и только около 2% поднимают грузы с массой более 1000 кг. Для подъема и перемещения грузов с массой от нескольких единиц до десятков и сотен тонн применяют грузоподъемные краны, управляемые оператором- машинистом крана. Среди работ, выполняемых с помощью кранов, значительное место занимают однообразные и монотонные, а также тяжелые и трудоемкие, требующие снижения времени операций, что зачастую трудно осуществимо в связи с ограниченными психофизиологическими возможностями человека-оператора, а также работы, проводимые во вредных и опасных для здоровья условиях: при повышенной температуре воздуха, интенсивном тепловом излучении, загазованности и запыленности, радиоактивности, высоком уровне шума, недостаточной видимости. Все эти причины обусловили актуальность создания и применения грузоподъемных кранов с программным управлением, т. е. кранов-роботов.

    Переход от автоматизации отдельных рабочих процессов (например, процессов пуска и торможения) кранов к дистанционному, автоматизированнному и автоматическому управлению некоторыми типами кранов наметился с конца 50-х гг. нашего столетия, а уже в 60-х в ряде стран использовались автоматизированные грейферные краны, дистанционно управляемые краны атомных электростанций, накоплен опыт автоматизации строительных кранов и манипуляторов при выполнении ими работ по демонтажу зданий и сооружений. В настоящее время достаточно широко применяются автоматические краны-штабелеры с программным управлением, являющиеся органической составной частью роботизированных технологических систем и гибких автоматизированных производств.

    Успешность создания грузоподъемного крана с программным управлением, представляющего собой подъемно-транспортный промышленный робот (ПТПР), функционирующий без непосредственного участия оператора, зависит от конструктивных особенностей крана и от характера выполняемого технологического процесса. В этом смысле наиболее близки к ПР по характеру и последовательности манипуля- ционных действий так называемые краны с жестким подвесом груза, работающие в прямоугольной (преимущественно), цилиндрической или комбинированной системах координат по достаточно четко организованному технологическому циклу, например, специальные технологические краны: штабелеры, колодцевые клещевые, мульдозавапочные, краны для "раздевания"слитков, напольно-завапочные машины, штыревые анодные краны, контейнерные козловые и др.

    Важное значение для обеспечения автоматической работы кранов с программным управлением имеет точность остановки механизмов и позиционирования грузозахватных органов - вил, подхватов, клещей, хобота, специальных захватных устройств и траверс (спредеров) и т.п. Обычно требуемая по условиям технологического процесса точность позиционирования крановых механизмов ниже, чем точность позиционирования исполнительных органов ПР. Так, по точности остановки крановые механизмы можно позразделить на 4 класса. Например, упомянутые выше краны - штабелеры для обслуживания стеллажных складов имеют механизмы с повышенной точностью остановки, а автоматизированные грейферные краны - с низкой, что достаточно по условиям технологического процесса.

    5 Манипуляторы и их устройство
    Где можно встретить робота? В современном мире развитие робототехники идет полным ходом. Роботы используются везде, где это возможно: медицина, кинематограф, производство, оборона, транспорт, даже нынешние дети являются активными пользователями роботов, так как огромное количество разнообразных игрушек является их самыми настоящими представителями. То, что когда-то казалось роскошью и редкостью – сейчас обыденная составляющая жизни. Но задумывались ли вы, как они работают и к чему приведет технический прогресс? Помочь разобраться в этом поможет мое исследование.

    Мобильный робот - автоматическая машина, в которой имеется движущееся шасси с автоматически управляемыми приводами. Мобильные роботы созданы для передвижения в пространстве, чаще всего для того, чтобы добраться в места, недоступные для человека. На данный момент роботы освоили практически все виды передвижения, встречающиеся в живой природе: ходьба (как на двух, так и на четырех ногах), плавание, летание, ползание, а некоторые даже способны ползать по стенам.

    Манипуляционный робот – автоматическая машина (стационарная или передвижная), состоящая из исполнительного устройства в виде манипулятора, имеющего несколько степеней подвижности, и устройства программного управления, которая служит для выполнения в производственном процессе двигательных и управляющих функций. Такие роботы производятся в напольном, подвесном и портальном исполнениях. Сам манипулятор - это механизм для изменения пространственного положения объектов. Значение слова «манипулятор» закрепилось за словом с середины XX века, благодаря применению сложных механизмов для работы с опасными объектами в атомной промышленности.

    Очень часто инженеры создают многофункциональные машины, относящиеся к смешанной категории: они могут и передвигаться, и выполнять какие-либо действия. Такие роботы активно используются в освоении космоса. В качестве примера можно привести луно - и марсоходы. Задача этих машин не ограничивается способностью к перемещению. Им также необходимо умение брать образцы почвы, делать снимки и проводить различные эксперименты и измерения.



    1. Стрела. Обеспечивает перемещение груза в рабочей зоне. Выдвигается и задвигается с помощью гидроцилиндров.

    11. Рычаг управления телескопированием стрелы. Управляет гидроцилиндрами, позволяя выдвигать и складывать стрелу.

    2. Поворотная колонна. Это вертикальная часть крановой установки, на которой установлена стрела, грузовая лебедка, и гидроцилиндр изменения угла наклона стрелы. Колонна поворачивается поворотным механизмом.

    12. Рычаг управления поворотом колонны. Управляет гидромотором поворота колонны, позволяя КМУ совершать вращательные движения вокруг своей оси.


    3. Основание КМУ. Устанавливается на раму автомобиля.

    13. Рычаги управления аутригерами. Управляют выдвижением и втягиванием аутригеров.

    4.Грузовая лебедка. Посредством гидромотора поднимает и опускает груз с помощью каната.

    14. Рычаги управления аутригерами. Управляют выдвижением и втягиванием аутригеров.


    5. Поворотный механизм. Поворачивает колонну посредством гидромотора.

    15. Крюк. Для закрепления груза.

    6. Гидроцилиндр подъема. Поднимает и опускает стрелу.

    16. Рычаг акселератора. Предназначен для регулировки оборотов двигателя.

    7. Гидроцилиндр телескопирования. Выдвигает и втягивает секции стрелы.

    17. Предупредительный сигнал. При нажатии кнопки звукового сигнала, включается звуковой сигнал автомобиля. Предназначен для предупреждения людей, находящихся в зоне работы.

    8. Аутригеры (выносные опоры). Аутригеры поддерживают кран-манипулятор в устойчивом положении во время работы.

    18. Грузовой канат. Предназначен для поднятия груза.

    9. Рычаг управления изменением угла наклона стрелы. Предназначен для изменения угла наклона стрелы.

    19. Индикатор грузоподъемности. Показывает вес поднимаемого груза.

    10. Рычаг управления грузовой лебёдкой. Управляет лебёдкой, позволяя поднимать и опускать крюк.







      1. Принцип работы манипулятора

    Вся работа начинается только после того, как будет запушен ДВС автомобиля на платформе которого установлен кран-манипулятор, далее через КПП авто вращение передается на коробку отбора мощности, приводящая в движение насос НШ, который перемещает гидравлическую жидкость.
    • Гидравлический насос (НШ) производит забор масла из масляного бака, создает давление и передает его на распределитель, затем через обратку, фильтр сливается обратно в бак.

    • Гидрораспределитель – распределяет поток гидравлической жидкости дальше по системе, в гидроцилиндры либо в гидромоторы, происходит это по средствам перемещения рычагов управления влево, вправо либо вверх, вниз (в зависимости от модели манипулятора).
    • Жидкость поступает в гидромоторы, которых обычно установлено два на автомобиле – первый на поворот стрелы, второй на лебёдку.

    А. Гидромотор на поворот стрелы – это устройство, которое создает вращательное движение. Вал насоса вращает поворотный редуктор, из которого выходит вал-шестерня и далее к венцу прикреплена установка.

    Б. Второй гидромотор стоит в самой станине, передает крутящий момент на лебёдку, где трос либо поднимает, либо опускает груз.



    5.2 Манипуляторы в жизни




    Сферы использования роботов. Такие разработки как Atlas еще не вошли в нашу повседневную жизнь, но со стремительным развитием технологий роботы перестают быть редкостью, а без некоторых из них мы уже не представляем свою жизнь. Я рассмотрела основные схемы использования роботов, а также перспективные направления их развития. За списком перспективных направлений я обратилась к интернету. Меня заинтересовала статья на сайте tesla-tehnika. biz. В ней были перечислены такие направления, как групповая робототехника, медицинские роботы, киборги и – одно из важнейших – искусственный интеллект. Теперь подробнее о каждом.

    Групповая робототехника. Согласно информации с сайта, групповая робототехника – это направление, в котором разрабатываются роботы некрупного размера, взаимодействующие друг с другом и окружающей средой, а достижению цели способствует самоорганизация роботов.

    Медицинская робототехника. Роботы в медицине – очень широкая группа. В нее входят машины, используемые для проведения операций, как, например, робот Да Винчи, о котором я узнала с сайта . На этом сайте я нашла описание робота и принцип управления им: «Роботизированная хирургическая система «Да Винчи» состоит из двух основных блоков – первых из них – операционный – оснащен тремя или четырьмя манипуляторами-инструментами. Три операционных манипулятора представляют собой универсальные держатели хирургических и электрокоагуляционных инструментов, разработанных специально для этого робота, последний манипулятор оборудован двумя эндоскопическими видеокамерами, передающими изображение на операционную консоль хирурга, т. е. во второй блок.



    6.Основные этапы проектирования манипуляторов и их содержание
    Техническая организация роботизированных производств зависит от конструкции используемых роботов. При проектировании роботизированных технологических комплексов (РТК) в соответствии с требованиями автоматизируемого производства должны быть выбраны необходимые типы ПР, их системы управления, компоновочно-кинематические схемы манипуляторов и их параметры. Если промышленность не выпускает такие роботы, то приходится разрабатывать проект модификации ближайшей по своим характеристикам модели. В отдельных случаях модификация нецелесообразна из-за слишком большого отличия прототипа от требуемых параметров. Тогда разрабатывают новую модель робота, причем проектируют не просто ПР, а составной элемент роботизированной производственной системы. Поэтому его основные функциональные, конструктивные и эксплуатационные характеристики должны быть тесно связаны с соответствующими характеристиками других элементов системы.

    Чтобы решить вопрос о возможности и способе применения ПР для автоматизации конкретного производственного процесса, необходимо знать следующие основные характеристики робота:функциональные — число, вид и взаимное расположение степеней подвижности; число и диапазоны установок точек позиционирования по каждой степени подвижности; формы, размеры и расположение рабочей зоны — множества всех точек пространства, в которых могут находиться рабочие органы ПР; число и вид программ и команд в программе; число, вид и характеристики каналов связи систем управления с внешним оборудованием; грузоподъемность робота; возможные технологические усилия на рабочих органах; диапазоны скоростей и ускорений рабочих органов робота и точность их задания; адаптацию робота или его схватов к погрешностям расположения, формы и массы объектов манипулирования;
    6.1 Устройство  промышленного  работа

     

      Традиционное  назначение  промышленного  робота  заключается  в  перемещении  объекта  (детали  или  инструмента)  внутри  рабочей  зоны  не  более  чем  по  шести  степеням  подвижности  (трем  поступательным  и  трем  вращательным)  с  изменением  ориентации.  Требования  к  кинематической  схеме  определяются  сложностью  выполняемых  операций .

     Промышленный  робот  представляет  собой  кинематическую  цепь состоящую из шарниров и звеньев.Количество  независимых  управляемых  ведущих осей,необходимых  для  перемещения  тела  в  пространстве  в  заданном  направлении,определяется числом степеней подвижности системы.В  кинематической  схеме  робота  выделяются  следующие  части .

    Манипулятор Представляет собой последовательность связанных cочленений звеньев,несущих  запястье или рабочий орган.Манипулятор  обеспечивает  движение  по  каждой изосей.Одна ось обеспечивает движение по прямой,две  оси  задают  движение  по  плоскости , три  оси  и  более  задают  движение  в  рабочем  пространстве .

       Запястье Представляет  собой  последовательность  звеньев  между  манипулятором  и  рабочим органом,предназначенных  для  ориентации  последнего  относительно  детаЗапястье  служит  для  изменения  ориентации  и  корректировки  положения  рабочего  органа
















    Заключение.


    Мир уже привык к роботам, они стали неотъемлемой его частью. Медицинские роботы спасают жизни огромному количеству людей. Роботы в кинематографе не перестают удивлять нас своей реалистичностью. Промышленные роботы облегчают труд целых бригад рабочих, ускоряя и делая качественнее процесс изготовления продукции. Однажды роботы с искусственным интеллектом станут друзьями, помощниками и защитниками человечества.

    Я справился с поставленными в начале исследования задачами: я написал текст, основываясь на знаниях из различных источников, проиллюстрировала его и постаралась разобраться в устройстве манипуляторов. Мне было очень интересно искать информацию в книгах и прочих источниках, узнавать что-то новое для своего исследования. Подготовка текста реферата была достаточно сложной, но важной задачей, которая помогла осмыслить и систематизировать информацию, которую я нашел в источниках. Создание иллюстраций дало возможность найти пробелы в моих знаниях и понимании в теме и впоследствии устранить их.  Благодаря тому, что я узнал о робототехнике и манипуляторах в течение этого года, наверняка сможет пригодиться мне в будущем. Даже если я не смогу стать настоящим робототехником или инженером, то мне все равно хотелось бы иметь хоть какую-нибудь возможность работать с роботами, не входящими в список обыденных устройств, присутствующих практически в каждом доме. Особенно меня заинтересовала тема искусственного интеллекта, так как она связана не только с программированием и физикой, но и с биологией, так как человеческий мозг – в первую очередь орган, который невозможно воспроизвести в виде программы, не изучив его работу в человеческом организме. Думаю, я смело могу добавлять робототехнику в список интересующих меня профессий.

    Список литературы

    Основы робототехники. – 2-е изд., перераб. и доп. – СПб.: БХВ-Петербург, 2005. – 416 с.: Основы управления манипуляционными роботами: Учебник для вузов. – 2-е изд., исправ. и доп. М.: Изд-во МГТУ им. , 2004, - 480 с.: ил. Теоритические основы робототехники. – В 2 кн. – М.: Наука, 2006. – 383 с. (Кн.1). Манипуляционные роботы: динамика и алгоритмы. — М.: Наука, 1978. — 400 с. https://ru. wikipedia. org, Робототехника. Неизвестный автор, Робот-хирург Да Винчи. http:///robot-xirurg , , Системы управления манипуляционных роботов. — М.: Наука, 1978. — 416 с. Д. Ловин. Создаем робота-андроида своими руками.: пер. с англ. – М.: Издательский дом ДМК-пресс, 2007 – 312 с.: ил. Неизвестный автор, статья о перспективах робототехники, tesla-tehnika. biz «NOVA: Самый умный робот», 2013 год, «Watson». Артем Батогов, «Робот Atlas получил обновления и стал больше похож на человека»; Николай Хижняк, « Cyberlegs – перспективное разработка протезирования нижних конечностей», http://hi-news. ru/.



    написать администратору сайта