Изготовление моделей молекул ацетилена, пентана.
Скачать 32 Kb.
|
Министерство образования Республики Башкортостан Государственное бюджетное профессиональное образовательное учреждение Октябрьский нефтяной колледж им. С. И. Кувыкина Индивидуальный проект по общеобразовательной дисциплине «Химия» На тему: “Изготовление моделей молекул ацетилена, пентана.” Подготовил: Мурсалимов Н.Р. СТ-3 Проверила: Гареева С.Р. ____/____ г. Октябрьский 2019 Содержание: Введение 1. Производство ацетилена термическим крекингом 2. Производство ацетилена термоокислительным пиролизом метана 3. Извлечение ацетилена из реакционных газов 4. Пентан, получение и использование 5. Получение ацетилена из карбида кальция 6. Свойства ацетилена 7. Литература Введение В настоящее время перспективным является получение ацетилена из углеводородных газов нефтепереработки или из природного газа. Производство ацетилена из этих газов основано на крекинге их, требующем затраты большого количества энергии для создания высокой температуры. При этом ацетилен получается низкой концентрации и загрязненный гомологами. Применение такого ацетилена невозможно без выделения его из реакционной смеси и очистки. В промышленном масштабе используются электротермический крекинг метана и термический крекинг пропана. Большое внимание уделяется термоокислительному пиролизу метана, так как этот способ позволяет наиболее комплексно использовать природный газ. Электрокрекинг характеризуется высокими затратами в подсобных цехах, связанных с обеспечением этого производства. Без утилизации побочных продуктов электрокрекинга стоимость ацетилена значительно повышается. При технологическом оформлении метода встречаются трудности конструктивного порядка, связанные с применением высокой температуры. К достоинствам электрокрекинга относится возможность использования различных углеводородов газообразных и жидких.Термический крекинг требует меньше капитальных затрат и электроэнергии на единицу продукта. Расход основного углеводородного сырья по этому методу выше, чем при электрокрекинге, так как нагрев реакционных печей происходит за счет сжигания газообразного топлива или в виде процесса частичного окисления исходного сырья—углеводородов поступающих на крекинг.Существенное значение имеет вопрос подбора жароупорных материалов. Применение регенеративных печей с цикличностью их работы вызывает трудность при выдерживании режима на последующих стадиях процесса. Это же обстоятельство усложняет автоматизацию производства.Процесс частичного окисления исходного сырья—метана или термоокислительный пиролиз его базируется на дешевом сырье—природном газе. Конструктивно решен вопрос теплового воздействия путем проведения пиролиза в факеле горения. Многоканальные и одноканальные реакторы при промышленной и опытной эксплуатации показали, что термоокислительный крекинг имеет реальные перспективы для широкого промышленного применения. Экономическая целесообразность его во многом определяется рациональным использованием побочных продуктов—синтез-газа. Литературные данные [1,2] показывают, что во получения ацетилена из углеводородного сырья и правильной о: экономических показателей отдельных методов уделяется большое внимание. Пентаны — насыщенные ациклические углеводороды класса алканов. Имеют пять атомов углерода в молекуле (от др.-греч. πέντε — пять). Изопентан обладает наркотическим действием. Класс опасности четвёртый[1]. 1.Производство ацетилена термическим крекингом Сырьем для производства ацетилена по описываемой схеме служит жидкий пропан, который испаряется в испарителе 1 и поступает в смеситель 25; в него же подается возвратный газ и водяной пар. Отношение объемов пропан: возвратный газ : пар=1: 2 : 6. Смесь указанного состава поступает в печь 16 на крекинг. Имея температуру 300°С на выходе из печи, газы крекинга проходят последовательно охладитель 3, смолоотделитель 4, теплообменник 5, охлаждаясь до 38°С, и ротационным вакуум-насосом направляются далее. Тепло, полученное крекинг-газом в вакуум-насосе, снимается холодильником 6. Сконденсировавшиеся смола и вода выпускаются из башенного смолоотделителя 7. Вода собирается в сборник 19 и подается на орошение в смолоотделитель 4. Крекинг-газ очищается от остатков смолы в электрофильтре 8 и поступает в газгольдер, который выравнивает работу печей (на схеме одна печь), так как крекинг-процесс в каждой печи протекает периодически (схема №2).Из газгольдера с помощью компрессора крекинг-газ сжимается до давления 10,5 атм., охлаждается в холодильнике 20, проходит смолоотделитель 9 и поступает на очистку.В абсорбере 21 происходит поглощение диацетилена диметилформ-амидом, при этом поглощается около 5% ацетилена, имеющегося в крекинг-газе. Диметилформамид, вытекающий из абсорбера, направляется на де- . сорбцию (на схеме не показано). Освобожденные от диацетилена крекинг-газы поступают в абсорбер ацетилена 22, в котором происходит поглощение диметилформамидом ацетилена, метилацетилена и некоторого количества других газов: этана, этилена, метана и пр. Газовый отход, содержащий углекислый газ, водород, азот, метан, этилен проходит очистку в водяном скруббере 11 и используется как топливо в печи 16.Насыщенный диметилформамид поступает в стабилизатор растворителя 14. Температура в нижней части стабилизатора с помощью кипятильника 15 поддерживается равной 87°С. В стабилизаторе отделяются почти все газы, кроме ацетилена, которые уходят через водяной скруббер 2. Диметилформамид, насыщенный ацетиленом, с частью оставшихся газов направляется в десорбер ацетилена 23. При температуре в нижней части десорбера, равной 120°С, ацетилен весь выделяется и через водяной скруббер 12 поступает в газгольдер. Из пего ацетилен, пройдя осушитель 13 с хлористым кальцием, подается компрессором потребителю.Диметилформамид, содержащий растворенный метилацетилен, из кипятильника 24 направляется в конечный десорбер (на схеме не показан) для извлечения метилацетилена, затем после соответствующей очистки диметилформамид снова возвращается в напорный бак 10. 2.Производство ацетилена термоокислительным пиролизом метана Быстрый вывод реакционной смеси из зоны реакции и резкое понижение температуры — закалка — способствует прекращению распада ацетилена, повышая его выход. Существенным является соотношение между количествами метана и кислорода.Процесс получения ацетилена возможно осуществить в многоканальном реакторе (способ Заксе), состоящим из смесителя, диффузора и горел очной плиты с большим числом каналов. Скорость движения исходных компонентов 15—50 м/сек. Этот способ получил пока наибольшее распространение.Одноканальные реакторы Гриненко имеют реакционную зону — капал—относительно малого диаметра. Скорость движения газов в зоне реакции равняется, 330—550 м/сек. Стабилизация пламени осуществляется путем подачи дополнительного кислорода через топочную камеру.Концентрация ацетилена в газах пиролиза составляет 8—10%, поэтому для дальнейшей переработки его необходимо выделить из этих газов (см- схему № 3).По описываемой схеме производство ацетилена осуществляется в многоканальном реакторе, выделение ацетилена производится адсорбцией селективным растворителем—диметилформамидом. Сырьем является природный газ, содержащий 92—95% метана и 95—99% кислорода.Кислород и природный газ очищаются в фильтрах 15 и 16 от окислов железа и других примесей, могущих вызвать воспламенение смеси до реакционной зоны, и поступают в подогреватели, вмонтированные в общую печь 13. Подогрев газов, идущих на реакцию, производится теплом, полученным от сжигания топливного газа. Во избежание перегрева природного газа и кислорода в топку подогревателей вводятся циркуляционные дымовые газы, часть которых сбрасывается для использования под котлами-утилизаторами. Циркуляция дымовых газов осуществляется газодувками, выдерживающими высокую температуру. Нагретые кислород и природный газ поступают в реактор 17. В его смесителе газы смешиваются, проходят диффузор, затем горелочную плиту, по каналам которой смесь газов направляется в реакционную зону. В зоне реакции происходит образование ацетилена и протекают побочные реакции, приведенные выше. Продукты реакции проходят через зону закалки, резко охлаждаясь водой, подаваемой форсунками под горелочную плиту.Вода из реактора, загрязненная смолой и сажей, поступает в отстойник 20, из которого центробежным насосом возвращается в реактор. Часть йоды откачивается на очистку. Охлажденный газ пиролиза из реактора уходит в скруббер 14 для очистки от сажи и смолы водой. Окончательная очистка от этих примесей производится в электрофильтре 1, смонтированном на скруббере.Поступающий на разделение газ пиролиза нагнетается турбокомпрессором в абсорбер ацетилена 2,орошаемый диметилформамидом и конденсатом из сборника 21 и холодильника 22.Диметилформамид из абсорбера 2 дросселируется в десорбер 3, работающий при атмосферном давлении, сверху десорбера отбираются возвратные газы. Растворенный в диметилформамиде ацетилен выделяется и промывается в промывателе 4 и направляется в газгольдер потребителя. Диметилформамид, вытекающий издесорбера 5, с некоторым содержанием ацетилена центробежным насосом через теплообменник 25 подается вдесорбер второй ступени 5, работающий под вакуумом. Вытекающий из него диметилформамид, не содержащий газов, через теплообменник 25 и холодильник 24 возвращается в сборник 21, из которого подается на орошение абсорбера 2. Высшие ацетилены из десорбера второй ступени 5 поступают в промыватель 12, орошаемый конденсатом из сборники 23. Промывные воды из промывателя стекают в десорбер 5. Пары высших ацетиленов через барометрический конденсатор 7 и лопушку 8 вакуум-насосом подаются в отделение пиролиза. Вода из барометрического конденсатора сбрасывается через барометрический стакан 18. Сверху из десорбера 5 ацетилен возвращается в десорбер 3.Диметилформамид, вытекающий из десорбера второй ступени 5, после теплообменника 25 частично откачивается в сборник 26, из которого поступает на дистилляцию. Затем он подогревается в подогревателе І0и направляется в колонну 28. Отгоняющиеся инерты и пары воды через конденсатор 9 уходят из системы. Сконденсировавшийся диметилформамид стекает обратно в колонну. Из нижней части колонны, обогреваемой кипятильником 12, вытекает очищенный диметилформамид, который после охлаждения в холодильнике 27перекачивается в сборник 21. 3. Извлечение ацетилена из реакционных газов Абсорбция водой. На первой стадии реакционный газ промывается маслом для отделения бензола, нафталина, части диацетилена и др. Затем реакционная смесь компримируется до 18—20 атм. и поступает на абсорбцию водой. Вместе с ацетиленом водой абсорбируется и углекислый газ. Десорбция ацетилена ведется четырехступенчатым дросселированием до первоначального давления. Затем ацетилен очищается от примесей (С02, SО2). Очищенный ацетилен содержит 98—99% С2Н2.Схема этого метода сложна, очистка недостаточна, расход электроэнергии значителен-Абсорбция селективными растворителями. Из растворителей ацетилена для промышленного применения пригодны диметилформамид, бутнролактон, N —метилиирролидан, диметилсульфоксид и некоторые другие. Технологические схемы извлечения ацетилена из реакционных газов термического крекинга (см. схему № 2) и термоокислительного пиролиза (см. схему № 3) диметилформамидом наиболее разработаны и находят практическое применение, несмотря на их сложность и недостаточную очистку от С02.Низкотемпературная абсорбция метанолом, аммиаком или ацетоном. Реакционный газ предварительной промывкой щелочью освобождают от сажи и углекислого газа, сушат, промывают метанолом и абсорбируют ацетилен аммиаком при атмосферном давлении и температуре —70°С. Аммиак, содержащий растворенный ацетилен, подвергают разгонке для отделения его от ацетилена. Способ имеет то преимущество, что не требуется компримирования ацетиленовой смеси. Растворитель аммиак доступен и дешев.Извлечение ацетилена методом гиперсорбции опробовано на пилотной установке, имеются лабораторные данные , показывающие возможности использования этого метода в промышленном масштабе.Но описываемое схеме извлечениеацетилена из реакционных газов производится абсорбцией диметилформамидом. Реакционные газы, предварительно очищенные от сажи, бензола, нафталина, сероводорода, сжимаются компрессором до давления 10,5 атм. Сжимаемая смесь газов хорошо охлаждается в холодильниках 7, расположенных после ступеней сжатия компрессора так, чтобы температура ее перед абсорбером 2 не превышала 38°С (Схема № 4). В абсорбере 1, слабо орошаемом диметилформамидом, происходит поглощение почти всего диацетилена, растворимость которого значительно превосходит растворимость ацетилена в данном растворителе. В том же абсорбере поглощается и около 5% ацетилена от всего количества, имеющегося в реакционной смеси. Поглощение ацетилена происходит в абсорбере 2, орошаемом также диметилформамидом. Насыщенный ацетиленом диметилформамид дросселируется до давления 0,7 атм. иступает в стабилизатор 14.Из верхней части стабилизатора удаляются водород, окись углерода, азот и другие газы, а также часть ацетилена и пары диметилформамида. В конденсаторе 8 конденсируются пары диметилформамида. Конденсат с частью поглощенного ацетилена через фазоразделитель 9 стекает обратно в стабилизатор 14. Газовая фаза, содержащая которое количество ацетилена, подвергается обработке с целью извлечения ацетилена (на схеме не показано).Кубовая жидкость стабилизатора дросселируется до атмосферного давления и подается в десорбер 16,обогреваемый с помощью кипятильника 17. Ацетилен, метилацетилен и пары диметилформамида поступай конденсатор 10, где конденсируются пары диметилформамида. Конденсатом поглощается большая часть метилацетилена и возвращается через фазоразделитель 11 в десорбер. Газовая фаза промывается водой в скруббере 12, орошаемом водой. Очищенный 99%-ный ацетилен направляется потребителю. Вода, вытекающая из скруббера, выводится из системы.Диметилформамид с растворенным в нем диацетиленом, вытекающий из абсорбера 1, собирается в сборнике 13, из которого перекачивается десорбер 3. Снизу в этот десорбер поступает газ, выходящий из абсорбеpa2. Этим газом из диметилформамида выдуваются растворенные в ацетилен и диацетилен, после чего он направляется на очистку. Часть газа, выходящего из абсорбера 2, поступает в десорбер 4, орошаемый диметилформамидом, вытекающим из кубовой части десорбера 16. В десорбере 4 также отдувается растворенный в диметилформамиде ацетилен который вместе с газами, выходящими из десорбера 3, поступает на отмывку водой в скруббер 5 и направляется далее на очистку (на схеме не указана).Диметилформамид, после охлаждения в холодильнике 6,поступает в хранилище, из которого расходуется на орошение абсорберов 1 и 2. 4. Пентан, получение и использование Пентаны выделяют из конденсатов природного газа, из нефти, лёгких погонов сланцевой смолы, из углеводородов, синтезируемых из CO и H2 (синтез-газа). Пентановую фракцию используют как сырье для процесса изомеризации. н-Пентан при этом превращается в смесь изомеров. Обогащенная изопентанами фракция используется как компонент бензинов или служит для выделения изопентана — сырья для получения изопрена, который является мономером для синтеза синтетических каучуков. Также пентаны в составе прямогонных бензиновых фракций нефти используются при производстве нефтяных растворителей. 5. Получение ацетилена из карбида кальция При стехиометрическом соотношении реагентов и отсутствии охлаждения температура продуктов реакции составит 730°С, при этом ацетилен будет подвергаться конденсации и термическому разложению с выделением тепла, что обусловливает дальнейшее повышение температуры. Взрывные условия протекания реакции достигаются в том случае, когда реакция карбида с водой идет при недостаточном отводе тепла, особенно в присутствии воздуха.В практических условиях теплоту реакции регулируют несколькими способами. В различных типах генераторов, работающих по принципу «вода на карбид», скорость реакции регулируют с таким расчетом, чтобы обеспечить соответствующий отвод тепла, тогда как в генераторах, работающих по принципу «карбид в воду», используют большой избыток воды. В «сухих» генераторах применяют сравнительно небольшой избыток воды, но при таких условиях, в которых вся или почти вся избыточная вода испаряется.Ацетилен, предназначенный для наполнения баллонов, обычно получают в мокрых генераторах, работающих по принципу «карбид в воду». Большую часть ацетилена для химических синтезов получают в сухих генераторах. Эти крупные генераторы представляют собой аппараты низкого давления. Для производства ацетилена, используемого в качестве горючего газа, применяются генераторы различных типов, в том числе мокрые генераторы, работающие по принципу «вода на карбид». К этому классу относятся генераторы с капельным питанием, лотковые, погружные и контактные. Каждый класс генераторов подразделяется по двум различным признакам: 1) передвижные или стационарные и 2) низкого или среднего давления. Генерацию под низким давлением обычно проводят при избыточном давлении 254-356 мм вод. ст. (0,025-0,035 aт), а под средним давлением при 0,5-1 aт. Однако иногда применяется термин «высокое давление» (например, в ФРГ), который имеет тот же смысл, что и среднее давление. Однако целесообразнее использовать термин «высокое давление» для сжатого ацетилена, находящегося в баллонах под давлением 5-25 aт, или ацетилена, используемого в тех химических производствах, где процесс проводят при таких высоких давлениях. Следует отметить, что отношение воды к карбиду в мокрых генераторах должно быть таким, чтобы содержание твердой фазы в известковом шламе было не более 18%.Скорость реакции зависит от состава карбида и температуры, а также ряда факторов (часть из которых трудно учесть), определяющих скорости подвода молекул воды к поверхности карбида. Давно известно, что существуют быстро и медленно реагирующие сорта карбида и что различные образцы карбида, полученные в одном и том же производственном процессе, заметно различаются.Иногда в генераторах наблюдается вспенивание жидкости. К счастью, оно происходит не часто, но может причинить большие неприятности. Это явление объясняют тем, что карбид кальция, который находился в атмосфере с высокой относительной влажностью, вступает в контакт с другим, горячим карбидом, например в бункерах. Поверхность кусков карбида, находившегося во влажной атмосфере, обычно покрывается слоем гашеной извести, которая вступает во взаимодействие с нагретым карбидом с выделением ацетилена. При 200--350°С в присутствии извести ацетилен полимеризуется (при температуре >350°С карбонизуется) с образованием продуктов, способствующих вспениванию.Вспенивание значительно снижает скорость генерации ацетилена, а также выход газа (при любых температурах). Если концентрация NaCl в шламе или воде превышает 2%, то из-за вспенивания нельзя использовать генераторы типа «карбид в воду». Некоторые другие типы генераторов могут работать при концентрациях NaCl 10 - 15% (температура замерзания водных растворов от - 8 до - 10°С) со скоростью генерации и выходом газа в 2 раза меньшими, чем при использовании чистой воды.Образующийся в процессе производства шлам утилизируется. В том случае, когда для отделения и отвода шлама используют отстойники, медленное осаждение нарушает нормальный режим работы генератора. При слишком быстром осаждении может образоваться плотный слой осадка извести, тормозящий отвод шлама из генератора или даже препятствующий ему. Для предотвращения образования осадка извести в сырье вводят добавки реагентов, препятствующих выпадению накипи в паровых котлах, например таннина, сульфитно-целлюлозных щелоков, глицерина, патоки, мыла или жидкого стекла. 6. Свойства ацетилена Ацетилен является искусственным газом, так как он не имеет природного происхождения. Он горючий и весит легче воздуха. Газообразный углеводород добывается на специальных установках из карбида кальция, который в свою очередь подвергается разложению водой. В атмосферном воздухе ацетилен горит коптящим ярким пламенем. При давлении свыше двух атмосфер он может быть взрывоопасным. В чисто химическом виде это соединение имеет слабовыраженный эфирный запах. А технический продукт, наоборот, из-за имеющихся примесей насыщен резковатым ароматом. Ацетилен намного легче воздушных масс, в газообразном состоянии он бесцветен. Описываемое соединение растворяется во многих жидких веществах при этом, чем ниже температура, тем лучше растворимость ацетилена. Для этого газа характерны реакции полимеризации, димеризации, цикломеризации. Ацетилен может полимеризоваться в бензол или в другие химические органические соединения, такие как полиацетин. Атомы этого газа могут отщепляться в виде протонов. И за счет этого проявляются кислотные свойства ацетилена. Ацетилен способен спровоцировать взрыв в отсутствие кислорода как природного окислителя. И особенности горючести этого газа были открыты еще в 1895 году А. Шателье. Именно он заметил, что ацетилен, сгорая в кислоте, дает яркое пламя, температура которого может достигать выше 3000 градусов Цельсия. Он ценится за свою универсальность и недорогую стоимость. Впервые этот газ был получен Эдмундом Деви, который проводил лабораторные опыты с карбидом калия. Чуть позже опыты с получением ацетилена проводились Пьером Бертло. Физик получил чистый ацетилен, пропуская обыкновенный водород над электрической дугой. Именно Бертло назвал новое химическое соединение ацетиленом Литература 1. Данный реферат частично составлен с помощью информации из русской Википедии 2. Габриелян, 10 класс по химии 2002 г. 3. Общая химия, Коровин H.В., 2002. 4. Химия. Олифиренко Г.Л. 2010 |