Лекции по искуственному интеллекту. Классификация интеллектуальных информационных систем
Скачать 286 Kb.
|
Классификация интеллектуальных информационных систем
Любая информационная система (ИС) выполняет следующие функции: воспринимает вводимые пользователем информационные запросы и необходимые исходные данные, обрабатывает введенные и хранимые в системе данные в соответствии с известным алгоритмом и формирует требуемую выходную информацию. С точки зрения реализации перечисленных функций ИС можно рассматривать как фабрику, производящую информацию, в которой заказом является информационный запрос, сырьем – исходные данные, продуктом – требуемая информация, а инструментом (оборудование) – знание, с помощью которого данные преобразуются в информацию. Знание имеет двоякую природу: фактуальную и операционную.
Часто фактуальное знание называют экстенсиональным (детализированным), а операционное значение – интенсиональным (обобщенным). Процесс извлечения информации из данных сводится к адекватному соединению операционного и фактуального знаний и в различных типах ИС выполняется по-разному. Самый простой путь их соединения заключается в рамках одной прикладной программы: Программа = Алгоритм (Правила преобразования данных + Управляющая структура) + Структура данных Таким образом, операционное знание (алгоритм) и фактуальное знание (структура данных) неотделимы друг от друга. В системах, основанных на обработке баз данных (СБД – Data Base Systems), происходит отделение фактуального и операционного знаний друг от друга. Первое организуется в виде базы данных, второе – в виде программ. Причем программа может автоматически генерироваться по запросу пользователя. В качестве посредника между программой и базой данных выступает программный инструмент доступа к данным – система управления базой данных (СУБД ): СБД = Программа <=> СУБД <=> База данных Общие недостатки традиционных ИС, к которым относятся системы первых двух типов, заключаются в слабой адаптируемости к изменениям в предметной области и информационным потребностям пользователей, в невозможности решать плохо формализуемые задачи, с которыми управленческие работники постоянно имеют дело. Перечисленные недостатки устраняются в интеллектуальных информационных систем (ИИС). Анализ структуры программы показывает возможность выделения из программы операционного знания (правил преобразования данных) в так называемую базу знаний, которая в декларативной форме хранит общие для различных задач единицы знаний. При этом управляющая структура приобретает характер универсального механизма решения задач (механизма вывода), который связывает единицы знаний в исполняемые цепочки (генерируемые алгоритмы) в зависимости от конкретной постановки задачи (сформулированной в запросу цели и исходных условий). Такие ИС становятся системами, основанными на обработке знаний или просто знаний (СБЗ – Knowledge Base (Based) Systems): СБЗ = База знаний <=> Управляющая структура <==> База данных (Механизм вывода) СБЗ – являются интеллектуальными ИС (ИИС) в силу возможности генерации алгоритмов решения задач, для которых, как правило, характерны следующие признаки:
Коммуникативные способности ИИС характеризуют способ взаимодействия (интерфейса) конечного пользователя с системой, в частности, возможность формулирования произвольного запроса в диалоге с ИИС на языке, максимально приближенном к естественному. Классификация ИИС Интеллектуальные информационные системы Коммуникативные способности Решение сложных задач (экспертные системы) Способность к самообучению (самообуч. системы) __Интеллектуальные ___Классифицирующие Базы данных системы ____Индуктивные ___Естественно-языковый ___Доопределяющие системы Интерфейс системы ___Нейронные ___Гипертекстовые системы, ___Трансформирующие сети мультимедиа системы ___Системы, ___Контекстные системы основанные Помощи (help-desk Многоагентные на прецедентах Systems) ____системы (Multi-Agent) Информационные ___Когнитивная графика ___ хранилища (Data Warehouse) Возможно применение также гибридных систем, реализующих комбинация трех признаков интеллектуальности на основе комплексирования различных компонентов. Рассмотрим особенности ИИС в зависимости от принадлежности их к тем или иным классам. 1.2 Системы с интеллектуальным интерфейсом Интеллектуальные базы данных отличаются от обычных бах данных возможностью выборки по запросу необходимой информации, которая может явно не хранится, а выводиться из имеющейся в базе данных. Примерами таких запросов могут быть следующие: - “Вывести список товаров, цена которых выше среднеотраслевой”, - “Вывести список товаров-заменителей некоторой продукции”, - “Вывести список потенциальных покупателей некоторого товара” и ДР. Для выполнения первого типа запроса необходимо сначала проведение статистического расчета среднеотраслевой цены по всей базе данных, а уже после этого собственно отбор данных. Для выполнения второго типа запроса необходимо вывести значения характерных признаков объекта, а затем поиск по ним аналогичных объектов. Для третьего типа запроса требуется сначала определить список посредников-продавцов, выполняющих продажу данного товара, а затем провести поиск связанных с ними покупателей. Во всех перечисленных типах запросов требуется осуществить поиск по условию, которое должно быть доопределено в ходе решения задачи. Интеллектуальная система без помощи пользователя по структуре базы данных сама строит путь доступа к файлам данных. Формирование запроса осуществляется в диалоге с пользователем, последовательность шагов которого выполняется в максимально удобной для пользователя форме. Запрос к базе данных может формулироваться и с помощью естественно-языкового интерфейса. Естественно-языковой интерфейс предполагает трансляцию естественно-языковых конструкции на внутренний уровень представления знаний. Для этого необходимо решать задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Так морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям, синтаксический контроль разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей и, наконец, семантический анализ – установление смысловой правильности синтаксических конструкций. Синтез высказываний решает обратную задачу преобразования внутреннего представления информации в естественно-языковое. Естественно-языковой интерфейс используется для:
Гипертекстовые системы предназначены для реализации поиска по ключевым словам в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются возможностью более сложной семантической организации ключевых слов, которая отражает различные смысловые отношения терминов. Таким образом, механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом. В более широком плане сказанное распространяется и на поиск мультимедийной информации, включающей помимо текстовой и цифровой информации графические, аудио и видео- образы. Системы контекстной помощи можно рассматривать, как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров). Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы пользуются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации. Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования Принципов виртуальной реальности, когда графические образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия. 1.3 Экспертные системы Назначение экспертных систем заключается в решении достаточно трудных для экспертов задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области. Достоинство применения экспертных систем заключается в возможности принятия решений в уникальных ситуациях, для которых алгоритм заранее не известен и формируется по исходным данным в виде цепочки рассуждений (правил принятия решений) из базы знаний. Причем решение задач предполагает осуществлять в условиях неполноты, недостоверности,. Многозначности исходной информации и качественных оценок процессов. Экспертная система является инструментом, усиливающим интеллектуальные способности эксперта, и может выполнять следующие роли:
Архитектура экспертной системы включает в себя два основных компонента: базу знаний (хранилище единиц знаний) и программный инструмент доступа и обработки знаний, состоящий из механизмов вывода заключений (решения), приобретения знаний, объяснения получаемых результатов и интеллектуального интерфейса. База знаний – это совокупность единиц знаний, которые представляют собой формализованное с помощью некоторого метода представления знаний описание объектов проблемной области и их взаимосвязей, действий над объектами и возможно, неопределенностей, с которыми эти действия осуществляются. В качестве методов представления знаний чаще всего используются либо правила, либо объекты (фреймы), либо их комбинации. Так, правила представляют собой конструкцию: Если <условие> То <заключение> CF (Фактор определенности) <значение> В качестве факторов определенности (CF), как правило, выступают либо условные вероятности байесовского подхода (от 0 до 1), либо коэффициенты уверенности нечеткой логики (от 0 до 100). Примеры правил имеют следующий вид: Правило 1: Если коэффициент рентабельности >0.2 То рентабельность =«удовл.» CF 100 Правило 2: Если задолженность = «нет» и рентабельность = «удовл.» То финансовое состояние = «удовл.» CF 80 Правило 3: Если финансовое сост. = «удовл.» и репутация = «удовл.» То надежность предприятия = «удовл.» CF 90 Интеллектуальный интерфейс. Обмен данными между конечным пользователем и ЭС выполняет программа интеллектуального интерфейса, которая воспринимает сообщения пользователя и преобразует их в форму представления базы знаний и, наоборот, переводит внутреннее представление результат обработки в формат пользователя и выдает сообщение на требуемый носитель. Важнейшим требованием к организации диалога пользователя с ЭС является естественность, которая не означает буквально формулирование потребностей пользователя предложениями естественного языка, хотя это и не исключается в ряде случаев. Важно, чтобы последовательность решения задачи была гибкой, соответствовала представлениям пользователя и велась в профессиональных терминах. Механизм вывода. Этот программный инструмент получает от интеллектуального интерфейса преобразованный во внутреннее представление запрос, формирует из базы знаний конкретный алгоритм решения задачи, выполняет алгоритм, а полученный результат представляется интеллектуальному интерфейсу для выдачи ответа на запрос пользователя. В основе пользования любого механизма вывода лежит процесс нахождения в соответствии с поставленной целью и описанием конкретной ситуации (исходных данных) относящихся к решению единиц знаний (правил, объектов, прецедентов и т.д.) и связыванию их при необходимости в цепочку рассуждений, приводящую к определенному результату. Для представления знаний в форме правил это может быть прямая или обратная цепочка рассуждений. Коэфф. Рентабельность = Рентаб.>20 «удовл.» Финансовое Состояние = «удовл.» Задолженность = Надежность = «нет» «Удовл.» Репутация = «Удовл.» Прямая цепочка рассуждений Рентабельность = Коэфф. «Удовл.»? Рентаб.>20 ДА ДА Финансовое Состояние = «Удовл.»? Надежность = Задолженность = «Удовл.»? «нет»? ДА ДА Репутация = «Удовл.»? ДА Обратная цепочка рассуждений Для объектно-ориентированного представления знаний характерно применение механизма наследования атрибутов, когда значение атрибутов передаются по иерархии от вышестоящих классов к нижестоящим (например: код отрасли, отраслевой коэффициент рентабельности). Также при заполнении атрибутов фрейма необходимыми данными запускаются на выполнение присоединенные процедуры. Необходимыми данными запускаются на выполнение присоединенные процедуры. Механизм объяснения. В процессе или по результатам решения задачи пользователь может запросить объяснение или обоснование хода решения. С этой целью ЭС должна предоставить соответствующий механизм объяснения. Объяснительные способности ЭС определяются возможностью механизма вывода запоминать путь решения задачи. Тогда вопросы пользователя «Как?» и «Почему?» получено решение или запрошены те или иные данные система всегда может выдать цепочку рассуждений до требуемой контрольной точки, сопровождая выдачу объяснения заранее подготовленными комментариями. В случае отсутствия решения задач объяснение должно выдаваться пользователю автоматически. Полезно иметь возможность и гипотетического. Объяснения решения задачи, когда система отвечает на вопросы, что будет в том или ином случае. Однако, не всегда пользователя может интересовать полный вывод решения, содержащий множество ненужных деталей. В этом случае система должна уметь выбирать из цепочки только ключевые моменты с учетом их важности и уровня знаний пользователя. Для этого в базе знаний необходимо поддерживать модель знаний и намерений пользователя. Если же пользователь продолжает не понимать полученный ответ, то система должна быть способна в диалоге на основе поддерживаемой модели проблемных знаний обучать пользователя тем или иным фрагментам знаний, т.е. раскрывать более подробно отдельные понятия и зависимости, если даже эти детали непосредственно в выводе не использовались. Механизм приобретения знаний. База знаний отражает знания экспертов (специалистов) в данной проблемной области о действиях в различных ситуациях или процессах решения характерных задач. Выявлением подобных знаний и последующим их представлением в базе знаний занимаются специалисты, называемые инженерами знаний. Для ввода знаний в базу и их последующего обновления, ЭС должна обладать механизмом приобретения знаний. В простейшем случае это интеллектуальный редактор, который позволяет вводить единицы знаний в базу и проводить их синтаксический и семантический контроль, например, на непротиворечивость, в более сложных случаях извлекать знания путем специальных сценариев интервьюирования экспертов, или из вводимых примеров реальных ситуаций, как в случае индуктивного вывода, или из текстов, или из опыта работы самой интеллектуальной системы. Классы экспертных систем. По степени сложности решаемых задач ЭС можно классифицировать следующим образом: -по способу формирования решения ЭС разделяются на два класса: аналитические и синтетические. Аналитические системы предполагают выбор решений из множества известных альтернатив (определение характеристик объектов), а синтетические системы – генерацию неизвестных решений (формирование объектов). -по способу учета временного признака ЭС могут быть статическими и динамическими. Статические системы решают задачи при неизменяемых в процессе решения данных и знаниях, динамические системы допускают такие изменения. Статические системы осуществляют монотонное непрерывное пересмотра в процессе решения полученных ранее результатов и данных. -по видам используемых данных и знаний ЭС классифицируются на системы с детерминированными (четко определенными) знаниями и неопределенными знаниями. Под неопределенностью знаний (данных) понимается их неполнота (отсутствие), недостоверность (неточность измерения), двусмысленность (многозначность понятия), нечеткость (качественная оценка вместо количественной). -по числу используемых источников знаний ЭС могут быть построены с использованием одного или множества источников знаний могут быть альтернативными (множество миров) или дополняющими друг друга (кооперирующими). В соответствии с перечисленными признаками классификации, как правило, выделяются следующие четыре основные класс ЭС:
Классы ЭС Классифицирующие ЭС. К аналитическим задачам прежде всего относится задачи распознавания различных ситуаций, когда по набору заданных признаков (факторов) выявляется сущность некоторой ситуации, в зависимости от которой выбирается определенная последовательность действий. Таким образом, в соответствии с исходными условиями среди альтернативных решений находится одно, наилучшим образом удовлетворяющее поставленной цели и ограничениям. Экспертные системы, решающие задачи распознавания ситуаций, называются классифицирующими, поскольку определяют принадлежность анализируемой ситуации к некоторому классу. В качестве основного метода формирования решений используется метод логического дедуктивного вывода от общего к частному, когда путем подстановки исходных данных в некоторую совокупность взаимосвязанных общих утверждений получается частное заключение. Доопределяющие экспертные системы. Более сложный тип аналитических задач представляют задачи, которые решаются на основе неопределенных исходных данных и применяемых знаний. В этом случае экспертная система должна как бы доопределять недостающие знания, а в пространстве решений может получаться несколько возможных решений с различной вероятностью или уверенностью в необходимости их выполнения. В качестве методов работы с неопределенностями могут использоваться байесовский вероятностный подход, коэффициенты уверенности, нечеткая логика. Доопределяющие экспертные системы могут использоваться для формирования решения несколько источников знаний. В этом случае могут использоваться эвристические приемы выбора единиц знаний из их конфликтного набора, например, на основе использования приоритетов важности, или получаемой степени определенности результата, или значений функций предпочтений и т.д. Для аналитических задач классифицирующего и доопределяющего типов характерны следующие проблемные области:
В качестве методов решения задач в трансформирующих экспертных системах используются разновидности гипотетического вывода:
Многоагентные системы. Для таких динамических систем характерна интеграция в базе знаний нескольких разнородных источников знаний, обменивающихся между собой получаемыми результатами на динамической основе, например, через «доску объявлений». События Доска объявлений Ист. Знаний - 1 Ист. Знаний - 2 Ист. Знаний - 3 Ист. Знаний - 4 «Доска объявлений» Для много агентных систем характерны следующие особенности:
Для синтезирующих динамических экспертных систем наиболее применимы следующие проблемные области:
|