Главная страница
Навигация по странице:

  • 54. эндокринная функция поджелудочной железы и ее роль в регуляции обмена углеводов. Регуляция эндокринной функции поджелудочной железы

  • Нарушение функции поджелудочной железы.

  • 55.6 Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функций организма.

  • 56.7 Половые железы .Мужские и женские половые гормоны и их физиологическая роль в формировании пола и регуляции процессов воспроизведения.

  • Коллоквиум 2


    Скачать 192.73 Kb.
    НазваниеКоллоквиум 2
    АнкорKolok_ShIZA_2.docx
    Дата27.02.2017
    Размер192.73 Kb.
    Формат файлаdocx
    Имя файлаKolok_ShIZA_2.docx
    ТипДокументы
    #3190
    страница5 из 5
    1   2   3   4   5

    53.4 Физиология щитовидной и околощитовидных желез. Нейро- гуморальные механизмы регуляций их функций.

    Основной структурно-функциональной единицей щитовидной железы являются фолликулы. Они представляют собой округлые полости, стенка которых образована одним рядом клеток кубического эпителия. Фолликулы заполнены коллоидом и содержат гормоны тироксин и трийодтиронин, которые связаны с белком тиреоглобулином. В межфолликулярном пространстве проходят капилляры, обеспечивающие обильнуюваскуляризацию фолликулов. В щитовидной железе объемная скорость кровотока выше, чем в других органах и тканях. В межфолликулярном пространстве находятся также парафолликулярные клетки (С-клетки), в которых вырабатывается гормон тиреокальцитонин.

    Биосинтез тироксина и трийодтиронина осуществляется за счет йодирования аминокислоты тирозина, поэтому в щитовидной железе происходит активное поглощение йода. Содержание йода в фолликулах в 30 раз превышает его концентрацию в крови, а при гиперфункции щитовидной железы это соотношение становится еще больше. Поглощение йода осуществляется за счет активного транспорта. Активность тироксина в несколько раз меньше, чем трийодтиронина. С другой стороны, содержание тироксина в крови примерно в 20 раз больше, чем трийодтиронина. Тироксин при дейодировании может превращаться в трийодтиронин. На основании этих фактов предполагают, что основным гормоном щитовидной железы является трийодтиронин, а тироксин выполняет функцию его предшественника. Действие гормонов щитовидной железы проявляется резким усилением метаболической активности организма. При этом ускоряются все виды обмена веществ (белковый, липидный, углеводный), что приводит к увеличению энергообразования и повышению основного обмена. В детском возрасте это имеет существенное значение для процессов роста, физического развития, а также энергетического обеспечения созревания ткани мозга, поэтому недостаток гормонов щитовидной железы у детей приводит к задержке умственного и физического развития (кретинизм). У взрослых при гипофункции щитовидной железы наблюдается торможение нервно-психической активности (вялость, сонливость, апатия); при избытке гормонов, наоборот, наблюдаются эмоциональная лабильность, возбуждение, бессонница.

    Кальцитонин, или тиреокальцитонин, снижает уровень кальция в крови. Он действует на костную систему, почки и кишечник, вызывая при этом эффекты, противоположные действию паратирина. В костной ткани тиреокальцитонин усиливает активность остеобластов и процессы минерализации. В почках и кишечнике угнетает реабсорбцию кальция и стимулирует обратное всасывание фосфатов. Реализация этих эффектов приводит к гипокальциемии.

    Околощитовидные железы. Регуляция обмена кальция осуществляется в основном за счет действия паратирина и кальцитонина. Паратгормон обеспечивает увеличение уровня кальция в крови. Органами-мишенями для этого гормона являются кости и почки. В костной ткани пара­тирин усиливает функцию остеокластов, что способствует деминерализации кости и повышению уровня кальция и фосфора в плазме крови Паратирин усиливает синтез кальцитриола, который является активным метаболитом витамина D3. Последний вначале образуется в неактивном состоянии в коже под влиянием ультрафиолетового излучения, а затем под влиянием паратирина происходит его активация в печени и почках. Кальцитриол усиливает образование кальцийсвязывающего белка в стенке кишечника, что способствует обратному всасыванию кальция и развитию гиперкальциемии. Таким образом, увеличение реабсорбции кальция в кишечнике при гиперпродукциипаратирина в основном обусловлено его стимулирующим действием на процессы активации витамина D3. Прямое влияние самого паратирина на кишечную стенку весьма незначительно.Гиперпродукцияпаратирина приводит к деминерализации и резорбции костной ткани, развитию остеопороза. Резко увеличивается уровень кальция в плазме крови, в результате чего усиливается склонность к камнеобразованию в органах мочеполовой системы.

    Секреция паратирина и тиреокальцитонина регулируется по типу отрицательной обратной связи в зависимости от уровня кальция в плазме крови. При снижении содержания кальция усиливается секреция паратирина и тормозится выработка тиреокальцитонина. Увеличение концентрации кальция в плазме крови, наоборот, способствует снижению секреции паратирина и увеличению выработки тиреокальцитонина.

    54. эндокринная функция поджелудочной железы и ее роль в регуляции обмена углеводов. Регуляция эндокринной функции поджелудочной железы.

    Поджелудочная железа – железа со смешанной функцией. Морфологической единицей железы служат островки Лангерганса, преимущественно они расположены в хвосте железы. Бета-клетки островков вырабатывают инсулин, альфа-клетки – глюкагон, дельта-клетки – соматостатин. В экстрактах ткани поджелудочной железы обнаружены гормоны ваготонин и центропнеин.

    Инсулинрегулирует углеводный обмен, снижает концентрацию сахара в крови, способствует превращению глюкозы в гликоген в печени и мышцах. Он повышает проницаемость клеточных мембран для глюкозы: попадая внутрь клетки, глюкоза усваивается. Инсулин задерживает распад белков и превращение их в глюкозу, стимулирует синтез белка из аминокислот и их активный транспорт в клетку, регулирует жировой обмен путем образования высших жирных кислот из продуктов углеводного обмена, тормозит мобилизацию жира из жировой ткани.

    В бета-клетках инсулин образуется из своего предшественника проинсулина. Он переносится в клеточные аппарат Гольджи, где происходят начальные стадии превращения проинсулина в инсулин.

    В основе регуляции инсулина лежит нормальное содержание глюкозы в крови: гипергликемия приводит к увеличению поступления инсулина в кровь, и наоборот.

    Паравентрикулярные ядра гипоталамуса повышают активность при гипергликемии, возбуждение идет в продолговатый мозг, оттуда в ганглии поджелудочной железы и к бета-клеткам, что усиливает образование инсулина и его секрецию. При гипогликемии ядра гипоталамуса снижают свою активность, и секреция инсулина уменьшается.

    Гипергликемия непосредственно приводит в возбуждение рецепторный аппарат островков Лангерганса, что увеличивает секрецию инсулина. Глюкоза также непосредственно действует на бета-клетки, что ведет к высвобождению инсулина.

    Глюкагонповышает количество глюкозы, что также ведет к усилению продукции инсулина. Аналогично действует гормоны надпочечников.

    Вегетативная нервная система регулирует выработку инсулина посредством блуждающего и симпатического нервов. Блуждающий нерв стимулирует выделение инсулина, а симпатический тормозит.

    Количество инсулина в крови определяется активностью фермента инсулиназы, который разрушает гормон. Наибольшее количество фермента находится в печени и мышцах. При однократном протекании крови через печень разрушается до 50 % находящегося в крови инсулина.

    Важную роль в регуляции секреции инсулина выполняет гормон соматостатин, который образуется в ядрах гипоталамуса и дельта-клетках поджелудочной железы. Соматостатин тормозит секрецию инсулина.

    Активность инсулина выражается в лабораторных и клинических единицах.

    Глюкагон принимает участие в регуляции углеводного обмена, по действию на обмен углеводов он является антагонистом инсулина. Глюкагон расщепляет гликоген в печени до глюкозы, концентрация глюкозы в крови повышается. Глюкагон стимулирует расщепление жиров в жировой ткани.

    Механизм действия глюкагона обусловлен его взаимодействием с особыми специфическими рецепторами, которые находятся на клеточной мембране. При связи глюкагона с ними увеличивается активность фермента аденилатциклазы и концентрации цАМФ, цАМФ способствует процессу гликогенолиза.

    Регуляция секреции глюкагона. На образование глюкагона в альфа-клетках оказывает влияние уровень глюкозы в крови. При повышении глюкозы в крови происходит торможение секреции глюкагона, при понижении – увеличение. На образование глюкагона оказывает влияние и передняя доля гипофиза.

    Гормон роста соматотропинповышает активность альфа-клеток. В противоположность этому гормон дельта-клетки – соматостатин тормозит образование и секрецию глюкагона, так как он блокирует вхождение в альфа-клетки ионов Ca, которые необходимы для образования и секреции глюкагона.

    Физиологическое значение липокаина. Он способствует утилизации жиров за счет стимуляции образования липидов и окисления жирных кислот в печени, он предотвращает жировое перерождение печени.

    Функции ваготонина– повышение тонуса блуждающих нервов, усиление их активности.

    Функции центропнеина– возбуждение дыхательного центра, содействие расслаблению гладкой мускулатуры бронхов, повышение способности гемоглобина связывать кислород, улучшение транспорта кислорода.

    Нарушение функции поджелудочной железы.

    Уменьшение секреции инсулина приводит к развитию сахарного диабета, основными симптомами которого являются гипергликемия, глюкозурия, полиурия (до 10 л в сутки), полифагия (усиленный аппетит), полидиспепсия (повышенная жажда).

    Увеличение сахара в крови у больных сахарным диабетом является результатом потери способности печени синтезировать гликоген из глюкозы, а клеток – утилизировать глюкозу. В мышцах также замедляется процесс образования и отложения гликогена.

    У больных сахарным диабетом нарушаются все виды обмена.

    55.6 Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функций организма.

    В надпочечниках выделяют корковое и мозговое вещество. Корковое вещество включает клубочковую, пучковую и сетчатую зоны. В клубочковой зоне происходит синтез минералокортикоидов, основным представителем которых является альдостерон. В пучковой зоне синтезируются глюкокортикоиды. В сетчатой зоне вырабатывается небольшое количество половых гормонов.

    Альдостерон усиливает в дистальных канальцах почек реабсорбцию ионов Na+, одновременно увеличивая при этом выведение-с мочой ионов К+. Аналогичное усиление натрий-калиевого обмена происходит в потовых слюнных железах, а также в кишечнике. Это приводит к изменению электролитного состава плазмы крови (гипернатриемия и гипокалиемия).Снижение секреции альдостерона вызывает усиленное выведение натрия и воды с мочой, что приводит к дегидратации тканей, снижению объема циркулирующей крови и уровня АД. В результате в организме возникают явления циркуляторного шока. Концентрация калия в крови при этом, наоборот, увеличивается, что является причиной нарушения электрической стабильности сердца и развития сердечных аритмий.

    Основным фактором, регулирующим секрецию альдостерона, является функционирование ренин-ангиотензин-альдостероновой системы. При снижении уровня АД наблюдается возбуждение симпатической части автономной нервной системы, что приводит к сужению почечных сосудов

    Глюкокортикоиды вызывают следующие эффекты:

    1. Влияют на все виды обмена веществ:а) на белковый обмен. б) на жировой обмен в) на углеводный обмен. Таким образом, по характеру своего влияния на углеводный обмен глюкокортикоиды являются антагонистами инсулина. При длительном приеме этих гормонов с целью лечения или повышенной их выработке в организме может развиться стероидный диабет.

    2. Противовоспалительное действие. Глюкокортикоиды угнетают все стадии воспалительной реакции (альтерацию, экссудацию и пролиферацию), стабилизируют мембраны лизосом, что предотвращает выброс протеолитических ферментов, способствующих развитию воспалительной реакции

    3. Противоаллергическое действие. Изложенные выше эффекты, лежащие в основе противовоспалительного действия, во многом определяют также ингибирующее действие глюкокортикоидов на развитие аллергической реакции (стабилизации лизосом, угнетениеобразования факторов, усиливающих аллергическую реакцию, снижение экссудации и др.). Гиперпродукцияглюкокортикоидов приводит к снижению числа эозинофилов в крови, увеличенное количество которых обычно является «маркером» аллергии.

    4. Подавление иммунитета. Глюкокортикоиды угнетают как клеточный, так и гуморальный иммунитет, что связано со снижением образования антител и процессов фагоцитоза.

    5. Участие в формировании необходимого уровня АД. Глюкокортикоиды повышают чувствительность сосудистой стенки к действию катехоламинов, что приводит к гипертензии.

    Катехоламины. В мозговом веществе надпочечников содержатся хромаффинные клетки, в которых синтезируются адреналин и норадреналин. Примерно 80% гормональной секреции приходится на адреналин и 20% — на норадреналинК наиболее важ-ным эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение перистальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, усиление процессов катаболизма и образования энергии. Адреналин имеет большее сродство к β-адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым α-адренорецепторам.

    56.7 Половые железы .Мужские и женские половые гормоны и их физиологическая роль в формировании пола и регуляции процессов воспроизведения.

    Мужские половые железы. В мужских половых железах (яички) происходят процессы сперматогенеза и образование мужских половых гормонов — андрогенов. Сперматогенез осуществляется за счет деятельности сперматогенных эпителиальных клеток, которые содержатся в семенных канальцах. Выработка андрогенов происходит в интерстициальных клетках — гландулоцитах (клетки Лейдига), локализующихся в интерстиции между семенными канальцами и составляющих примерно 20% от общей массы яичек. Небольшое количество мужских половых гормонов вырабатывается также в сетчатой зоне коркового вещества надпочечников. К андрогенам относится несколько стероидных гормонов, наиболее важным из которых является тестостерон. Продукция этого гормона определяет адекватное развитие мужских первичных и вторичных половых признаков (маскулинизирующий эффект). Под влиянием тестостерона в период полового созревания увеличиваются размеры полового члена и яичек, появляется мужской тип оволосения, меняется тональность голоса. Кроме того, тестостерон усиливает синтез белка, что приводит к ускорению процессов роста, физического развития, увеличению мышечной массы. Тестостерон влияет на процессы формирования костного скелета — он ускоряет образование белковой матрицы кости, усиливает отложение в ней солей кальция. В результате увеличиваются рост, толщина и прочность кости. При гиперпродукции тестостерона ускоряется обмен веществ, в крови возрастает количество эритроцитов. Недостаточная секреция мужских половых гормонов приводит к развитию евнухоидизма, основными проявлениями которого являются задержка развития первичных и вторичных половых признаков, диспропорциональность костного скелета (несоразмерно длинные конечности при относительно небольших размерах туловища), увеличение отложения жира на груди, в нижней части живота и на бедрах. Нередко отмечается увеличение молочных желез (гинекомастия). Недостаток мужских половых гормонов приводит также к определенным нервно-психическим изменениям, в частности к отсутствию влечения к противоположному полу и утрате других типичных психофизиологических черт мужчины.

    Женские половые железы. В женских половых железах (яичники) происходит выработка эстрогенов и прогестерона. Секреция этих гормонов характеризуется определенной цикличностью, связанной с изменением продукции гипофизарных гонадотропинов в течение менструального цикла. Эстрогены, помимо яичников, в небольшом количестве могут также вырабатываться в сетчатой зоне коркового вещества надпочечников. Во время беременности секреция эстрогенов существенно увеличивается за счет гормональной активности плаценты. Наиболее активным представителем этой группы гормонов является β-эстрадиол. Прогестерон представляет собой гормон желтого тела; его продукция возрастает в конце менструального цикла.

    Под влиянием эстрогенов ускоряется развитие первичных и вторичных женских половых признаков. В период полового созревания увеличиваются размеры яичников, матки, влагалища, а также наружных половых органов. Усиливаются процессы пролиферации и рост желез в эндометрии. Эстрогены ускоряют развитие молочных желез, что приводит к увеличению их размеров, ускоренному формированию протоковойсистемы. Эстрогены влияют на развитие костного скелета посредством усиления активности остеобластов. Вместе с тем за счет влияния на эпифизарный хрящ тормозится рост костей в длину. Действие этих гормонов приводит к увеличению биосинтеза белка; усиливается также образование жира, избыток которого откладывается в подкожной основе, что определяет внешние особенности женской фигуры. Под влиянием эстрогенов развивается оволосение по женскому типу: кожа становится более тонкой и гладкой, а также хорошо васкуляризованной.

    Недостаточная секреция женских половых гормонов влечет за собой прекращение менструаций, атрофия молочных желез, влагалища и матки, отсутствие характерного оволосения по женскому типу. Существенные изменения претерпевает костная система — задерживается окостенение зоны эпифизарного хряща, что стимулирует рост кости в длину. Как правило, это больные высокого роста, с несоразмерно удлиненными конечностями, суженным и уплощенным тазом. Внешний вид приобретает мужские черты, тембр голоса становится низким
    1   2   3   4   5


    написать администратору сайта