Главная страница

Коллоквиум Филогенез систем органов. Регенерация. Гомеостаз


Скачать 164.08 Kb.
НазваниеКоллоквиум Филогенез систем органов. Регенерация. Гомеостаз
Дата28.01.2018
Размер164.08 Kb.
Формат файлаdocx
Имя файлаKollokvium_4.docx
ТипДокументы
#35339
страница2 из 9
1   2   3   4   5   6   7   8   9

Эволюционная адаптация – длительный процесс, приобретение новой генетической информации, изменяется генотип, следовательно, изменяется и фенотип. Для своего завершения подобная адаптация требует многих поколений.

Акклиматизация – адаптации, которые происходят в процессе жизни в естественных условиях.

Акклимация– адаптации, происходящие в искусственных условиях.

Происходит в течение нескольких часов – лет (зима – лето). Смена часовых поясов, перевод времени.

Немедленная адаптация сопровождается почти мгновенной адаптивной реакцией (психогенное воздействие, переход из тепла в холод). Кратковременная реакция.

Любая адаптация возникает в результате взаимодействия генетических факторов и факторов внешней среды.


  1. Генетические, клеточные и системные основы гомеостатических реакций организма.

Генные механизмы гомеостаза. Все явления гомеостаза организма генетически детерминированы. Уже на уровне первичных генных продуктов существует прямая связь – «один структурный ген - одна полипептидная цепь». Причем между первичной структурной ДНК полипептидной цепи существует колинеарное соответствие. В наследственной программе индивидуального развития организма предусмотрено формирование видоспецифических характеристик не в постоянных, а в меняющихся условиях среды, в пределах наследственно обусловленной нормы реакции. Двуспиральность ДНК имеет существенное значение в процессах ее репликации и репарации. И то и другое имеет непосредственное отношение к обеспечению стабильности стабильности функционирования генетического материала.

С генетической точки зрения можно различать элементарные и системные проявления гомеостаза. Примерами элементарных проявлений гомеостаза могут служить: генный контроль тринадцати факторов свертывание крови, генный контроль гистосовместимости тканей и органов, позволяющий возможность трансплантации (пересадки органов и тканей и их приживление).

Пересаженный участок называется трансплантатом. Организм, у которого берут ткань для пересадки, является донором, которому пересаживают - реципиентом. Успех трансплантации зависит от иммунологических реакций организма. Различают аутотрансплантацию, сингенную, аллотрасплантацию и ксенотрансплантацию.

Аутотрансплантация - пересадка тканей у одного и того же организма. При этом белки (антигены) трансплантата не отличаются от белков реципиента. Иммунологическая реакция не возникает.

Сингенная трансплантация проводится у однояйцовых близнецов, имеющих один генотип.

Аллотрансплантация пересадка тканей от одной особи к другой, относящихся к одному виду. Донор и реципиент отличаются по антигенам, поэтому у высших животных наблюдается длительное приживление.

Ксенотрансплантация - донор и реципиент относятся к разным видам. Этот вид трансплантации удается у некоторых беспозвоночных, но у высших животных такие трансплантанты рассыпаются.

При трансплантации большое значение имеет явление иммунологической талерантности(терпимости) к чужеродным клеткам вследствие реакции отторжения. Подавление иммунитета в случае пересадки тканей (иммунодепрессия) достигается: подавлением активности иммунной системы, облучением, введением антилимфотической сыворотки, гормонов коры надпочечников, химических препаратов - антидепрессантов (имуран). Основная задача подавить не просто иммунитет, а трансплантационный иммунитет.

Трансплантационный иммунитет определяется генетической конституцией донора и реципиента. Гены, ответственные за синтез антигенов, вызывающих реакцию на пересаженную ткань, называются генами тканевой несовместимости.

Клеточные механизмы гомеостаза направлены на восстановление клеток тканей, органов в случае нарушения их целостности. Совокупность процессов, направленных на восстановление разрушаемых биологических структур называется регенерацией. Такой процесс характерен для всех уровней: обновление белков, составных частей органелл клетки, целых органелл и самих клеток. Восстановление функций органов после травмы или разрыва нерва, заживление ран имеет значение для медицины с точки зрения овладения этими процессами.

Проявление регенерации классифицируется в зависимости от пролиферативной активности тканей на 3 группы:

1.    Ткани и органы, для которых характерны клеточная регенерация (кости, рыхлая соединительная ткань, кроветворная система, эндотелий, мезотелий, слизистые оболочки кишечного тракта, дыхательных путей и мочеполовой системы.

2.    Ткани и органы, для которых характерна клеточная и внутриклеточная регенерация (печень, почки, легкие, гладкие и скелетные мышцы, вегетативная нервная система, эндокринная, поджелудочная железа).

3.    Ткани, для которых характерна преимущественно внутриклеточнаярегенерация (миокард) или исключительно (клетки ганглии центральной нервной системы). Она охватывает процессы восстановления макромолекул и клеточных органелл путем сборки элементарных структур или путем их деления (митохондрии).

В процессе эволюции сформировалось 2 типа регенерации физиологическая и репаративная.

Физиологическая регенерация - это естественный процесс восстановления элементов организма в течении жизни. Например, восстановление эритроцитов и лейкоцитов, смена эпителия кожи, волос, замена молочных зубов на постоянные. На эти процессы влияют внешние и внутренние факторы.

Репаративная регенерация - это развитие органов и тканей, утраченных при повреждении или ранении. Процесс происходит после механических травм, ожогов, химических или лучевых поражениях, поражениях в результате болезней, хирургических операций.

Репаративная регенерация подразделяется на типичную (гомоморфоз) и атипичную(гетероморфоз). В первом случае регенерирует орган, который был удален или разрушен, во втором - на месте удаленного органа развивается другой.

Атипичная регенерация чаще встречается у беспозвоночных.

Регенерацию стимулируют гормоны гипофизаи щитовидной железы. Различают несколько способов регенерации:

1)    Эпиморфоз- или полная регенерация - восстановление раненой поверхности, достраивание части до целого (хвост у ящерицы, конечности у тритона).

2)    Морфоллаксис - перестройка оставшейся части органа до целого, только меньших размеров. Для этого способа характерно не дополнение до целого, а перестройка нового из остатков старого (конечности у таракана).

3)    Эндоморфоз- восстановление за счет клеточной внутриклеточной перестройки ткани и органа. Благодаря увеличению числа клеток и их размеров масса органа приближается к исходному.

У позвоночных репаративная регенерация осуществляется в следующей форме:

1)    Полная регенерация - восстановление исходной ткани после ее повреждения.

2)    Регенерационная гипертрофия, характерная для внутренних органов. При этом раневая поверхность заживает рубцом, удаленный участок не отрастает и форма органа не восстанавливается. Масса оставшейся части органа увеличивается за счет увеличения числа клеток и их размеров и приближается до исходной величины. Так у млекопитающих регенерирует печень, легкие, почки, надпочечники, поджелудочная, слюнные, щитовидная железа.

3)    Внутриклеточная компенсаторная гиперплазия ультраструктур клетки. При этом на месте повреждения образуется рубец, а восстановление исходной массы происходит за счет увеличения объема клеток, а не их числа на основе разрастания (гиперплазии) внутриклеточных структур (нервная ткань).


  1. Адаптация на поведенческом, биохимическом уровнях. Типы адаптации в зависимости от длительности адаптивного процесса.


Адапта́ция (лат. adapto — приспособляю) — процесс приспособления к изменяющимся условиям внешней среды.
*Поведенческая адаптация связана с определенным аспектом жизнедеятельности животного. Типичный пример – зимний сон у медведя.

*Биохимические адаптации обеспечивают оптимальное течение биохимических реакций в клетке, например, упорядочение ферментативного катализа, специфическое связывание газов дыхательными пигментами, синтез нужных веществ в определенных условиях и т. п.



В длительном адаптационном процессе условно можно выделить четыре периода.

1.

Первый продолжается до полугода и сопровождается выраженной дестабилизацией

физиологических функций.

2.

Второй занимает 2,5–3 года и характеризуется относительными стабилизацией

и синхронизацией

регуляторных и гомеостатических процессов. В это время в организме наряду с функциональной перестройкой происходят изменения на клеточно-молекулярном уровне.

3.

Третий период – стабилизации,

или адаптированности,

– длится 12–15 лет. Это новый уровень функционирования организма. Его поддержание требует постоянного напряжения систем регуляции. В этот период отмечаются стойкие изменения в биохимических показателях крови, повышение устойчивости мембран эритроцитов. Изменяется проницаемость капилляров. Однако в этот период довольно часто развиваются патологические процессы, особенно в сердечно-сосудистой и легочной системах. Поэтому считают, что происходит ускорение старения организма.

4. Четвертый период сопровождается все большим истощением резервных возможностей

организма, что приводит к появлению и обострению различных хронических заболеваний. Полагают, что в это время имеет место истощение и недостаточность глубинных клеточно-генетических резервов здоровья.

Виды адаптации.

Все адаптации делят на аккомодации и эволюционные адаптации. Аккомодации представляют собой обратимый процесс. Они возникают при резком изменении условий среды. Например, при переселении животные попадают в новую для них обстановку, но постепенно привыкают к ней. Например, человек, переселившийся из средней полосы в тропики или на Крайний Север, некоторое время испытывает дискомфорт, но со временем привыкает к новым условиям. Эволюционная адаптация необратима и возникшие изменения генетически закрепляются. Сюда относят все приспособления, на которые действует естественный отбор. Например, покровительственная окраска или быстрый бег. Приспособления также делят на организменные и видовые. Организменные адаптации в свою очередь подразделяются на морфологические, физиологические, биохимические и этологические. Морфологические адаптации проявляются в преимуществах строения, покровительственной окраске, предостерегающей окраске, мимикрии, маскировке, приспособительном поведении. Преимущества строения – это оптимальные пропорции тела, расположение и густота волосяного или перьевого покрова и т.п. Хорошо известен облик водного млекопитающего – дельфина. 
У животных, ведущих скрытный, затаивающийся образ жизни, полезным оказываются приспособления, придающие им сходство с предметами окружающей среды.
Покровительственная окраска позволяет быть незаметным среди окружающего фона.
Мимикрия (подражание) – это результат гомологичных (одинаковых) мутаций у разных видов, которые помогают выжить незащищённым животным.
Кроме защитной окраски, у животных и растений наблюдаются и другие средства защиты. У растений нередко образуются иглы и колючки, защищающие их от поедания травоядными животными (кактусы, шиповник, боярышник, облепиха и др.). Такую же роль играют ядовитые вещества, обжигающие волоски, например у крапивы.
Маскировка – приспособления, при которых форма тела и окраска животных сливаются с окружающими предметами. Например, в тропических лесах многие змеи неразличимы среди лиан, лохматый морской конёк похож на водоросль, насекомые на коре деревьев похожи на лишайники (жуки, усачи, пауки, бабочки).
 
Приспособительное поведение – принятие определённых поз покоя (гусеницы некоторых насекомых в неподвижном состоянии очень похожи на сучок дерева; бабочка каллима со сложенными крыльями удивительно напоминает сухой лист дерева), либо, наоборот, демонстративное поведение, отпугивающее хищников.
Физиологические адаптации - приобретение специфических особенностей обмена веществ в разных условиях среды. Они обеспечивают функциональные преимущества организма. Их условно разделяют на статические (постоянные физиологические параметры — температура, водно-солевой баланс, концентрация сахара и т. п.) и динамические (адаптации к колебаниям действия фактора — изменение температуры, влажности, освещенности, магнитного поля и т. п.).




  1. Клиническая и биологическая смерть. Реанимация.

Смерть у организмов состоит из 2-х этапов:

- клиническая смерть. Потеря сознания, прекращение дыхания, сердцебиения, отсутствие рефлексов, гомеостаз не нарушен и реанимация возможна.

- биологическая смерть. Прекращается обмен веществ, происходят аутолитические изменения, неупорядоченные биохимические реакции, идет нарушение гомеостаза.

Через 5-8 минут погибает кора больших полушарий головного мозга. Через 24 часа – сердечная мышца,

Смерть – завершающий этап онтогенеза.Реанимация при клинической смерти Проведение сердечно-легочной реанимации направлено на выведение больного из терминального состояния, восстановление нарушенных жизненно важных функций. Выбор метода и тактика реанимации определяются механизмом наступления смерти и часто не зависят от характера основного заболевания, которое на догоспитальном этапе оказания экстренной помощи может остаться нераспознанным. Основными реанимационными мероприятиями являются массаж сердца и искусственная вентиляция легких. Последовательность действий оказывающего помощь, согласно рекомендациям Американской ассоциации кардиологов, следующая: 1. Констатация отсутствия реакции на внешние раздражители. 2. Вызов помощников и реанимационной бригады. 3. Правильное укладывание больного на твердую, ровную поверхность и обеспечение проходимости дыхательных путей. 4. Проверка наличия самостоятельного дыхания. 5. При отсутствии самостоятельного дыхания – искусственная вентиляция легких (2 медленных полных вдоха «рот в рот»). 6. Проверка наличия пульса. 7. Непрямой массаж сердца в сочетании с искусственной вентиляцией легких до прибытия реанимационной бригады. Прибывшая реанимационная бригада приступает к специализированным реанимационным мероприятиям (требующим лекарственной терапии, специального оборудования), включая электрическую дефибрилляцию, электрическую стимуляцию сердца и др., однако без выполнения основных реанимационных мероприятий все более сложные специализированные вмешательства будут неэффективными.


  1. Проблемы трансплантации органов и тканей. Ауто-, алло- и ксено-трансплантация, трансплантация жизненно важных органов. Иммунобиологическая реакция. Тканевая несовместимость и пути ее преодоления. Искусственные органы.

Трансплантология – медико-биологическая наука, изучающая вопросы заготовки, консервирования и пересадки органов и тканей.

Трансплантационный иммунитет – своеобразная реакция организма на трансплантацию, проявляющаяся в отторжении пересаженных органов и тканей.

Классификация терминов (Вена, 1967 год).

Трансплантат – пересаживаемая ткань или орган.

Реципиент – тот, кому пересаживается орган или ткань.

Донор – тот, от кого берут трансплантат.

Аутотрансплантация – пересадка тканей и органов в пределах одного организма (в таком случае говорят об аутотрансплантате)

Изотрансплантация (изотрансплантат) - пересадка тканей и органов между организмами, идентичными по генетическим признакам.

Аллотранспланация (аллотрансплантат) - пересадка тканей и органов между организмами одного биологического вида.

Ксенотрансплантация (ксенотрансплантат) – пересадка тканей и органов между организмами разных биологических видов.

Эксплантация (эксплантат) – пересадка небиологического материала.

Комбинированная пересадка (комбинированный трансплантат).
Остро стоят 2 проблемы: сохранение органов и тканей с их неизмененными свойствами. Другая проблема – преодоление трансплантационного иммунитета.

Разные методы консервации.

1) Охлаждение (недолговременное).

2) Замораживание.

3) Лиофилизации.

Заморозка может разорвать ткань, что приводит к гибели ткани. Но сперматозоиды способны жить. Состояние анабиоза некоторых животных. Кровь заменяют криопротекторами, после разморозки производят обратную замену. Метод лиофилизации – заморозка высушиванием в воздухе. Хранение замороженных людей. Существуют банки тканей, банки органов на научной основе.

2 проблема более сложна. Живые организмы многие миллионы лет были индивидуальными т.к. одни индивиды не смешивались с другими, поэтому преодолеть эту проблему весьма сложно, но паразиты не отторгаются организмом. В трансплантологии сначала считали, что отторжение происходит из-за различного макроскопического и микроскопического строения тканей. Однако теперь выяснилось, что реципиент и донор различаются набором специфических белков и антигенов. Аллогенные и ксеногенные органы и ткани, содержащие трансплантационные гены, в организме вызывают защитную реакцию – выработку антител. Защита направлена на уничтожение пересаженных органов и тканей у реципиента и состоит из нескольких сложнейших иммунно-биологических реакций. Человек ощущает эти процессы с 7 дня, максимум процесса достигается на 14-21 сутки.

Преодоление тканевой несовместимости – работа хирургов, иммунологов, физиологов и других специалистов. Целое медицинское направление - иммунодепрессивная терапия – направлено на решение этой проблемы. Используют химические, физические и биологические факторы воздействия на организм реципиента.

Физические методы – радиоактивное излучение, рентгеновские лучи.

Химические методы – введение препаратов, снижающих иммунитет. Они сильно влияют на жизненно важные органы.

Биологические методывведение антитоксических сывороток, антибиотиков. Принцип действия - нейтрализация трансплантационных антител. Наиболее перспективный метод.

В настоящее время пересаживают практически все: и органы, и ткани.
1   2   3   4   5   6   7   8   9


написать администратору сайта