Главная страница
Навигация по странице:

  • в 1678 году, были объяснены многие

  • Монохромотическим называется излучение, спектр которого состоит из единственной ли

  • Конспект лекций по компьютерной графике. Конспект лекций по дисциплине Компьютерная графика


    Скачать 16.3 Mb.
    НазваниеКонспект лекций по дисциплине Компьютерная графика
    АнкорКонспект лекций по компьютерной графике.doc
    Дата22.04.2017
    Размер16.3 Mb.
    Формат файлаdoc
    Имя файлаКонспект лекций по компьютерной графике.doc
    ТипКонспект лекций
    #5372
    страница17 из 46
    1   ...   13   14   15   16   17   18   19   20   ...   46

    5.2 Обзор основных фрактальных программ


    В 1997 году на рынке компьютерной графики произошло знаменательное событие. Среди известных производителей профессионального ПО для графики (Adobe, Macromedia, Autodeck, Corel, Microsoft) объявился новичок, способный захватить часть рынка графического ПО. Речь идет о компании MetaCreations Inc, которая была образована путем слияния нескольких коллективов разработчиков, специализировавшихся в областях двухмерной (2D) и трехмерной графики (3D). Остановимся на наиболее значимых из них.

    Фирма MetaTools знаменита своим основателем — Каем Краузе, а также его детищами - наборами фильтров (plug-ins) для пакетов растровой (Kai's Power Tools) и векторной (Vector Effects)графики, модулями для программ обработки цифрового видео (Studio Effects) и генератором трехмерных ландшафтов КРГ Bryce. Компания Fractal Design впервые ввела в компьютерный обиход понятие Natural Media, представляющее возможность имитации “естественных” инструментов художника. Представьте, что вы рисуете на виртуальном холсте (то есть водите мышью по коврику и видите результат на экране монитора) инструментом программы Painter в режиме Oil (Кисть с масляной краской) лини. Зеленого цвета. Затем рядом тем же инструментом линию красного цвета. В результате вы видите, что в местах наложения цветов происходитсмешивание электронных красок точно так же, но как они бы смешивались на бумаге или на холсте. Не удивительно, что программы Fractal Designer Painter, Expression и Kay Dream Studio дали толчок развитию компьютерной графики как искусства.

    Итак, лидером на рынке фрактальной графики до недавнего времени (то есть до продажи своих программных продуктов другим фирмам) являлась компания Мeta Creations. Спектр ее продуктов охватывает многие области компьютерной графики. Fractal Design Painter - программа для создания и обработки высокохудожественных растровых иллюстраций. Поддерживает многослойность изображений и возможность использования фильтров от программы Adobe Photoshop. Данная программа позволяет эмулировать большое число художественных инструментов: карандаши, кисти, пастели, разнообразные типы красок. На сегодняшний день Fractal Desing Painter -программа «номер один» для художников, использующих в своем творчестве компьютер. Для максимально удобства работы рекомендуется использовать графический планшет, поскольку в отличие от мыши он позволяет более точно передавать путь движения кисти.

    Fractal Design Expression комбинирует в себе растровую и векторную технику компьютерной графики. То есть вы рисуете векторные объекты, как в CorelDRAW или Adobe Illustrator, редактируете их по опорным узлам и выполняете все прочие векторные операции. Но каждой линии, фигуре вы можете назначить любой растровый тип кисти. Кистей великое множество, ведь эта программа родилась во Fractal Design, фирме, знаменитой своей имитацией реальных инструментов художника. Здесь эмулируется практически все реальные растровое художественные инструменты и краски, а результатом работы является векторное изображение.

    Глава 6. Цветовые модели компьютерной графики



    Для изучения способов представления цвета в компьютерных системах сначала рассмотрим некоторые общие аспекты.

    6.1 Элементы цвета


    Представьте себе, что перед вами лежит лист белой бумаги с нарисованным на нем зеленым квадратом. Вы не задавали себе вопроса, «Почему этот цвет зеленый?» Ответ на него кроется в физических и биологических представлениях о природе


    Рис. 6.1. Основные участники процесса восприятия цвета

    Для того чтобы «увидеть» цвет, нужны три вещи (рис. 6.1):

    • источник света;

    • объект;

    • ваш глаз (приемник излучения).

    Теперь можно перейти к оценке роли физических и биологических аспектов про­цесса восприятия цвета.

    Первый аспект — физика. Свет попадает на квадрат и отражается.

    Второй аспект — биология. Отраженный свет попадает в глаз человека и воз­действует на светочувствительные клетки глаза, которые содержат два типа ре­цепторов: палочки (cones) и колбочки (staves). Колбочки активны только в тем­ноте или в сумерках. При нормальном освещении мы воспринимаем цвет исключительно с помощью палочек трех разновидностей, каждая из которых чувствительна к определенному диапазону видимого спектра. В данном случае отраженный от объекта свет воздействует на палочки, чувствительные к зеле­ному цвету. Они передают соответствующие импульсы в мозг, который после их обработки и последующей интерпретации выдает сообщение: квадратный, зеленый.

    Но вопросы по-прежнему остаются.

    Что в действительности стимулирует колбочки?

    Почему в данном случае происходит возбуждение только одного типа палочек, который чувствителен к зеленому цвету?

    Ответы на них будут даны ниже.

    6.1.1 Свет и цвет


    Как уже было отмечено в рассмотренном выше примере, наличие света является непременным условием визуального восприятия всего цветового богатства окру­жающего нас мира. В то же время из курса элементарной физики большинству из вас известно, что белый свет вне зависимости от его источника — солнце, лампоч­ка или экран монитора — в действительности представляет собой смесь цветов. Если пропустить луч белого света через простую призму, он разложится на цвет­ной спектр. Цвета этого спектра, называемого видимым спектром света, условно


    Рис. 6.2. Спектральный состав видимого цвета

    классифицируют как красный, оранжевый, желтый, зеленый, голубой, синий и фио­летовый. Любой из них, в свою очередь, представляет собой электромагнитное из­лучение, перекрывающее достаточно широкий диапазон длин волн видимого спек­тра (рис. 6.2). Для нашего глаза каждый кусочек этого видимого спектра обладает своими уникальными характеристиками, которые и называются цветом. Поскольку в видимом спектре содержатся миллионы цветов, то различие между двумя сосед­ними цветами практически неощутимо.

    Спектральный состав цвета можно представить в виде графика распределения энер­гии излучения по разным длинам волн. Та длина волны, на которую приходится максимальная интенсивность излучения, называется доминирующей. Именно она в значительной степени определяет окраску цвета, хотя основные па­раметры воспринимаемого нашим глазом цвета определяются результатом воздей­ствия на него всего спектрального состава цвета.

    6.1.2 Физическая природа света и цвета


    Напомним, что свет представляет собой электромагнитное излучение, связанное с флуктуацией электрического и магнитного полей. Иными словами, свет пред­ставляет собой энергию, а цвет есть продукт взаимодействия этой энергии с веще­ством. Однако для понимания природы цвета необходимо совершить небольшой экскурс в физику световых явлений и коснуться природы источников цвета.

    Свет имеет двойственную природу, обладая свойствами волны и частицы. Корпус­кулы света, называемые фотонами, излучаются источником света в виде волн, распро­страняющихся с постоянной скоростью порядка 300000 км/с. Аналогично морским волнам световые волны имеют гребни и впадины. Поэтому в качестве ха­рактеристики световых волн используют длину волны, представляющую собой рас­стояние между двумя гребнями (единица измерения — метры или ангстремы, рав­ные 108м), и амплитуду, определяемую как расстояние между гребнем и впадиной.

    Разные длины волны воспринимаются нами как разные цвета: свет с большой дли­ной волны будет красным, а с маленькой — синим или фиолетовым. В случае если свет состоит из волн разной длины (например, белый цвет содержит все длины волн,то наш глаз смешивает разные длины воли в одну, получаем таким образомодин результирующий цвет.


    Рис. 6.3. Характеристики световой волны

    Альтернативными характеристиками электромагнитного излучения являются час­тота (измеряемая в герцах или циклах/с) и энергия (измеряемая в электроно-вольтах). Чем короче длина волны, тем больше ее частота и выше энергия. И на­оборот, чем больше длина волны, тем меньше частота и ниже энергия.

    6.1.3 Излученный и отраженный свет


    Все, что мы видим в окружающем нас пространстве, либо излучает свет, либо его отражает.

    Излученный цвет — это свет, испускаемый активным источником. Примерами таких источников могут служить солнце, лампочка или экран монитора. В основе их дей­ствия обычно лежит нагревание металлических тел либо химические или термоядер­ные реакции. Цвет любого излучателя зависит от спектрального состава излучения. Если источник излучает световые волны во всем видимом диапазоне, то его цвет бу­дет восприниматься нашим глазом как белый. Преобладание в его спектральном со­ставе длин волн определенного диапазона (например, 400 - 450 нм) даст нам ощуще­ние доминирующего в нем цвета (в данном случае сине-фиолетового). И наконец, присутствие в излучаемом свете световых компонент из разных областей видимого спектра (например, красной и зеленой) дает восприятие нами результирующего цвета (в данном случае желтого). Но при этом в любом случае попадающий в наш глаз излу­чаемый цвет сохраняет в себе все цвета, из которых он был создан.

    Отраженный свет возникает при отражении некоторым предметом (вернее, его
    поверхностью) световых волн, падающих на него от источника света. Механизм
    отражения цвета зависит от цветового типа поверхности, которые можно условно разделить на две группы:


    • ахроматические;

    • хроматические.

    Первую группу составляют ахроматические (иначе бесцветные) цвета: черный, белый и все серые (от самого темного до самого светлого). Их часто называют ней­тральными. В предельном случае такие поверхности либо отражают все падающие на них лучи, ничего не поглощая (идеально белая поверхность), либо полностью лучи поглощают, ничего не отражая (идеальная черная поверхность). Все осталь­ные варианты (серые поверхности) равномерно поглощают световые волны раз­ной длины. Отраженный от них цвет не меняет своего спектрального состава, изменяется только его интенсивность.

    Вторую группу образуют поверхности, окрашенные в хроматические цвета, которые по-разному отражают свет с разной длиной волны. Так, если вы осветите белым

    цветом листок зеленой бумаги, то бумага будет выглядеть зеленой, потому что ее поверхность поглощает все световые волны, кроме зеленой составляющей белого цвета. Что же произойдет, если осветить зеленую бумагу красным или синим цве­том? Бумага будет восприниматься черной, потому что падающие на нее красный и синий цвета она не отражает. Если же осветить зеленый предмет зеленым све­том, это позволит выделить его на фоне окружающих его предметов другого цвета.

    Процесс отражения света сопровождается не только связанным с ним процессом поглощения в приповерхностном слое. При наличии полупрозрачных предметов часть падающего света проходит через них (рис. 6.4). На этом свойстве основано действие фильтров фотоаппаратов, вырезающих из области видимого спектра нужный цветовой диапазон (иначе — отсекающих нежелательный цветовой спектр). Чтобы лучше понять этот эффект, прижмите к поверхности лампочки пластину цвет­ного оргстекла. В результате наш глаз «увидит» цвет, не поглощенный пластиком.



    Рис. 6.4. Процессы отражения, поглощения и пропускания света объектом.

    Каждый объект имеет спектральные характеристики отражения и пропускания. Эти характеристики определяют, как объект отражает и пропускает свет с опреде­ленными длинами волн.

    • Спектральная кривая отражения определяется путем измерения отраженного

    света при освещении объекта стандартным источником.

    •Спектральная кривая пропускания определяется путем измерения света, яро-шедшего сквозь объект.

    Некоторые измерительные устройства позволяют даже вводить поправки, компен­сирующие изменение условий внешнего освещения.

    Спектральные характеристики отражения и пропускания связаны с явлением мета» метрии, суть которого состоит в том, что объекты с разными спектральными характе­ристиками могут выглядеть одинаково при одном освещении и по-разному — при дру­гом. Такое различие обусловлено как составом объектов, так и спектральным составом внешнего освещения. Для определения спектральных характеристик объектов исполь­зуют специальные приборы, спектрофотометры, со стандартными источниками света.

    Указанные различия в механизмах формирования излученного и отраженного

    цвета важны для понимания восприятия цвета глазом человека.

    6.1.4 Яркостная и цветовая информация


    Как уже отмечалось, излучаемый источником цвет, как правило, представляет со­бой смесь световых волн различной длины (рис. 6.5). Единственным исключе­нием являются так называемые монохроматические источники света, примерами которых могут служить различные типы лазеров и широко распрост­раненные натриевые лампы. Последние излучают свет только одной длины волны в оранжевой области спектра.



    Рис. 6.5. Источники света: 1 - в виде смеси длин волн, воспринимаемой как голубой цвет в соответствии с цветом доминирующей длины волны; 2 - монохроматический красный цвет

    Длина световых волн выражается в нанометрах (нм), представляющих собой мил­лиардные доли метра (10-9). Наш глаз может воспринимать электромагнитные волны с длинами в диапазоне от 400 до 700 нм, что составляет ничтожно малую часть всего спектра электромагнитных волн (от 104 до 10-14 м).

    В действительности человеческий глаз может воспринимать цвет в более широ­ком диапазоне длин волн — от 380 до 780 нм. Однако воздействие, оказываемое светом за пределами диапазона 400-700 нм, пренебрежимо мало.

    Как уже отмечалось, энергия, переносимая электромагнитной волной, связана с длиной волны обратно пропорциональной зависимостью. Поэтому фиолетовая область видимого спектра, являясь коротковолновой, обладает более высокой энер­гией по сравнению с красной областью спектра.

    С физической точки зрения свет можно охарактеризовать двумя параметрами: энергией (интенсивностью) и длиной волны. Однако в теории цвета, живописи, телевидении и компьютерной графике наибольшее распространение получили два производных от них параметра: яркость и цветность.

    Яркость (или интенсивность) пропорциональна сумме энергий всех составля­ющих цветового спектра света.

    Цветность, наоборот, связана с доминирующими длинами волн в этом спектре, Ахроматические цвета, то есть белые, серые и черные, характеризуются только яркостью. Это проявляется в том, что одни цвета темнее, а другие светлее. В отли­чие от них хроматические цвета для своего описания требуют задания и яркости, и цветности.

    Распространенность указанных параметров обусловлена физиологическими особенностями нашего зрения, связанными с наличием в сетчатке глаза уже упоми­навшихся ранее двух типов нервных клеток: палочек, реагирующих на яркостную составляющую света, и колбочек, воспринимающих цветовую информацию.

    Яркость является количественной характеристикой цвета. С ее помощью мы мо­жем сравнивать интенсивность излучения различных источников между собой. В отличие от нее цветность имеет качественный характер. Поэтому для того, что­бы сравнить два цвета по цветности, желательно было бы отделить их от яркости. Практически это невозможно, но теоретически вполне доступно с помощью имею­щейся всех графических пакетах цветовой модели Lab. Присутствующие в ней абстрактные цветовые компоненты (собственно цветности) а и b обладают нуле­вой яркостью, а канал L содержит только яркостную информацию.

    6.1.5 Цвет и окраска


    Для правильной интерпретации восприятия цвета необходимо различать понятия цвета и окраски предмета.

    Окраска — это способность предмета отражать излучение в том или ином диа­пазоне длин волн.

    Цвет является более широким понятием, включающим окраску и условия осве­щения.

    Чтобы представить имеющееся между ними различие, вспомните, как, например, выглядит снег при различных условиях освещения (зимний, мартовский или в су­мерках) или сравните его изображения на картинах Пластова, Грабаря и Кустоди­ева. Несмотря на то что чистый снег всегда имеет белую окраску, его цвет в зависи­мости от освещения может не только быть белым, но иметь голубой, розовый и даже желтый оттенки. Эту разницу очень важно понимать при использовании цвета в прикладных целях, поскольку различия в освещении при настройке цветопере­дачи изображения разработчиком и последующем просмотре изображения потре­бителем дадут совершенно разные результаты.

    Цвет - это один из факторов нашего восприятия светового излучения. Светом и цветом исследователи интересовались давно. Одним из первых выдающихся достижений в этой области являются опыты Исаака Ньютона в 1666 г. по разложению белого света на составляющие. Ранее считалось, что белый цвет — простейшей. Ньютон опроверг это. Суть опытов Ньютона такова. Белый луч света (использовался солнечный свет) направлялся на стеклянную треугольную призму. Пройдя сквозь призму, луч преломлялся и, будучи направ­ленный на экран, давал в результате цветную полосу — спектр. В спектре присутствовали цвета радуги, которые плавно переходили друг в друга. Эти цвета уже не раскладывались на составляющие. Ньютон разбил весь спектр на семь участков, соответствующих ярко выра­женным различным цветам. Он считал эти семь цветов основными — красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Почему именно семь? Некоторые объясняют это убежденностью Ньютона в мистических свойствах семерки.

    Вторая часть опытов Ньютона такова. Лучи, прошедшие сквозь призму, направлялись на вторую призму, с помощью которой удалось снова получить белый свет. Таким образом, было доказано, что белый цвет — это смесь множества разных цветов. Семь основных цветов Ньютон расположил по кругу (рис. 6.6).



    Рис. 6.6. Цветовой круг Ньютона

    Ньютон предположил, что определенный цвет получается путем смешивания основных цветов, взятых в определенной пропорции. Если в точках на границе цветового круга, которые соответствуют основным цветам, расположить грузы, пропорциональное количеству каждого цвета в смеси, то суммарный цвет будет соответствовать точке центра тяжести, Бе­лый цвет соответствует центру цветового круга.

    Последующие исследования цвета выполняли Томас Юнг, Джемс Максвелл и другие ученые. Исследования че­ловеческого цветовосприятия являлись довольно важной задачей, но основные усилия были направлены на изуче­ние объективных свойств света. В настоящее время физи­ки полагают, что свет имеет двойственный характер. С одной стороны, свет представляется в виде потока частиц (еще Ньютон выдвинул так называемую корпускулярну теорию). С другой стороны, свету присущи волновые свойства. С помощью волновой теории, выдвинутой Христианом Гюйгенсом в1678 году, были объяснены многие свойства света, в частности, законы отражения и преломления.



    Рис. 6.7. Зависимость чувчтвительности человеческого зрения от длины волны светового излучения

    С позиций волновых свойств цвет описывается следующим образом. Одна из волновых характеристик света - длина волны - расстояние, которое проходит волна в течение одного периода колебания. Монохромотическим называется излучение, спектр которого состоит из единственной линии, соответствующей единственной длине волны. Радуга, полученная Ньютоном, состоит из бесчисленного множества монохроматических излучений (равно как и радуга, наблю­даемая нами после дождя). Довольно качественным источником монохроматического излучения является лазер - именно поэтому его луч легко сфокусировать. Цвет монохроматического излучения определяется длиной волны. Диапазон дайн волн для видимого света простирается от 380-400 нм (фиолетовый) до 700-780 нм (красный). В указанном диапазоне чувствительность человеческого зрения непостоянная. Наибольшая чувствительность наблюдается для длин волн, соответствующих зеленому цвету.

    Как показал Ньютон, белый цвет можно представить смесью всех цветов радуги. Другими словами, спектр белого является бесконечным, сплошным - в нем присутствуют излучения всех длин волн видимого диапазона.

    1   ...   13   14   15   16   17   18   19   20   ...   46


    написать администратору сайта