Главная страница
Навигация по странице:

  • 1. КАЧЕСТВО И СВОЙСТВА МАТЕРИАЛОВ Качество материалов и его оценка

  • 1.2. Механические свойства материалов

  • 1.3. Технология материалов и технологические свойства Технология материалов

  • Обработкой металлов давлением

  • Технологические свойства

  • 1.4. Физические, химические и эксплуатационные свойства материалов

  • К эксплуатационным (служебным) свойствам

  • Конспект лекций по дисциплине технология конструкционных материалов раздел материаловедение


    Скачать 0.99 Mb.
    НазваниеКонспект лекций по дисциплине технология конструкционных материалов раздел материаловедение
    Дата26.11.2021
    Размер0.99 Mb.
    Формат файлаdoc
    Имя файлаKonspekt_lektsiy__materialovedenie.doc
    ТипКонспект
    #282890
    страница1 из 7
      1   2   3   4   5   6   7

    КОНСПЕКТ ЛЕКЦИЙ

    ПО ДИСЦИПЛИНЕ « ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ»

    / РАЗДЕЛ «МАТЕРИАЛОВЕДЕНИЕ» /

    Все материалы по химической основе делятся на две основные группы — металлические и неметаллические. К металлическим от­носятся металлы и их сплавы. Металлы составляют более 2/3 всех известных химических элементов.

    В свою очередь, металлические материалы делятся на черные и цветные. К черным относятся железо и сплавы на его основе — стали и чугуны. Все остальные металлы относятся к цветным. Чи­стые металлы обладают низкими механическими свойствами по сравнению со сплавами и поэтому их применение ограничивает­ся теми случаями, когда необходимо использовать их специаль­ные свойства (например, магнитные или электрические).

    Практическое значение различных металлов не одинаково. Наи­большее применение в технике приобрели черные металлы. На осно­ве железа изготавливают более 90 % всей металлопродукции. Однако цветные металлы обладают целым рядом ценных физико-химичес­ких свойств, которые делают их незаменимыми. Из цветных метал­лов наибольшее промышленное значение имеют алюминий, медь, магний, титан и др.

    Кроме металлических, в промышленности значительное место занимают различные неметаллические материалы — пластмассы, керамика, резина и др. Их производство и применение развивается в настоящее время опережающими темпами по сравнению с металли­ческими материалами. Но использование их в промышленности не­велико (до 10 %) и предсказание тридцатилетней давности о том, что неметаллические материалы к концу века существенно потеснят ме­таллические, не оправдалось.
    1. КАЧЕСТВО И СВОЙСТВА МАТЕРИАЛОВ


      1. Качество материалов и его оценка


    Качеством материала называется совокупность его свойств, удов­летворяющих определенные потребности в соответствии с назначени­ем. Уровень качества определяется соответствующими показателями, представляющими собой количественную характеристику одного или нескольких свойств материалов, которые определяют их качество применительно к конкретным условиям изготовления и использова­ния. По количеству характеризуемых свойств показатели качества подразделяются на единичные и комплексные. Единичный показатель качества характеризуется только одним свойством (например, твер­дость стали). Комплексный показатель характеризуется несколькими свойствами продукции. При этом продукция считается качественной только в том случае, если весь комплекс оцениваемых свойств удов­летворяет установленным требованиям качества. Примером комплек­сного показателя качества стали могут служить оценка химического состава, механических свойств, микро- и макроструктуры. Комплекс­ные показатели качества устанавливаются государственными стандар­тами.

    Методы контроля качества могут быть самые разнообразные: ви­зуальный осмотр, органолептический анализ и инструментальный кон­троль. По стадии определения качества различают контроль предва­рительный, промежуточный и окончательный. При предварительном контроле оценивается качество исходного сырья, при промежуточ­ном — соблюдение установленного технологического процесса. Окон­чательный контроль определяет качество готовой продукции, ее год­ность и соответствие стандартам. Годной считается продукция, полностью отвечающая требованиям стандартов и технических усло­вий. Продукция, имеющая дефекты и отклонения от стандартов, счи­тается браком.

    Качество материала определяется главным образом его свойства­ми, химическим составом и структурой. Причем свойства материала зависят от структуры, которая, в свою очередь, зависит от химического состава.

    Поэтому при оценке качества могут определяться свой­ства, состав и оцениваться структура материала. Свойства материа­лов и методы определения некоторых из них изложены в следующих разделах. Химический состав может определяться химическим ана­лизом или спектральным анализом.

    Существуют различные методы изучения структуры материалов. С помощью макроанализа изучают структуру, видимую невооружен­ным глазом или при небольшом увеличении с помощью лупы. Макро­анализ позволяет выявить различные особенности строения и дефек­ты (трещины, пористость, раковины и др.). Микроанализом называется изучение структуры с помощью оптического микроскопа при увели­чении до 3000 раз. Электронный микроскоп позволяет изучать струк­туру при увеличении до 25000 раз. Рентгеновский анализ применяют для выявления внутренних дефектов. Он основан на том, что рентге­новские лучи, проходящие через материал и через дефекты, ослабля­ются в разной степени. Глубина проникновения рентгеновских лучей в сталь составляет 80 мм. Эту же физическую основу имеет просвечи­вание гамма-лучами, но они способны проникать на большую глуби­ну (для стали — до 300мм). Просвечивание радиолучами сантиметро­вого и миллиметрового диапазона позволяет обнаружить дефекты в поверхностном слое неметаллических материалов, так как проникаю­щая способность радиоволн в металлических материалах невелика. Магнитная дефектоскопия позволяет выявить дефекты в поверхнос­тном слое (до 2 мм) металлических материалов, обладающих магнит­ными свойствами и основана на искажении магнитного поля в местах дефектов. Ультразвуковая дефектоскопия позволяет осуществлять эффективный контроль качества на большой глубине. Она основана на том, что при наличии дефекта интенсивность проходящего через материал ультразвука меняется. Капиллярная дефектоскопия слу­жит для выявления невидимых глазом тонких трещин. Она исполь­зует эффект заполнения этих трещин легко смачивающими матери­ал жидкостями.
    1.2. Механические свойства материалов
    Механические свойства характеризуют способность материа­лов сопротивляться действию внешних сил. К основным механичес­ким свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.

    Прочность — это способность материала сопротивляться раз­рушающему воздействию внешних сил.

    Твердость — это способность материала сопротивляться вне­дрению в него другого, более твердого тела под действием нагрузки.

    Вязкостью называется свойство материала сопротивляться раз­рушению под действием динамических нагрузок.

    Упругость — это свойство материалов восстанавливать свои раз­меры и форму после прекращения действия нагрузки.

    Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.

    Хрупкость — это свойство материалов разрушаться под дей­ствием внешних сил без остаточных деформаций.

    При статических испытаниях на растяжение определяют вели­чины, характеризующие прочность, пластичность и упругость мате­риала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диа­метром d0. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сеченияF0, МПа:

    σ = P/F0,

    Деформация характеризует изменение размеров образца под дей­ствием нагрузки, %:

    ε =[(l1-l0)/l0]·100,

    где l1 — длина растянутого образца.

    Деформация может быть упру­гой (исчезающей после снятия нагрузки) и пластической (остаю­щейся после снятия нагрузки).

    При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали. После проведения ис­пытаний определяются следующие характеристики механических свойств.

    Предел упругости σу— это максимальное напряжение при кото­ром в образце не возникают пластические деформации.

    Предел текучести σт— это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1). Если на диаграмме нет площадки текучести(что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2— напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σв— это на­пряжение, отвечающее максимальной нагрузке, которую выдержи­вает образец при испытании.

    Относительное удлинение после разрыва δ— отношение при­ращения длины образца при растяжении к начальной длине l0, %:

    δ =[(lk-l0)/l0]·100,

    где lк — длина образца после разрыва.



    Рис. 1. Статические испытания на растяжение: а – схема испытания;

    б – диаграмма растяжения

    Относительным сужением после разрыва ψ называется умень­шение площади поперечного сечения образца, отнесенное к началь­ному сечению образца, %:

    ψ =[(F0-Fk)/F0]·100,

    где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.

    Твердость металлов измеряется путем вдавливания в испытуе­мый образен твердого наконечника различной формы/

    Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердо­сти по Бринеллю НВ определяется отношением нагрузки, действую­щей на шарик, к площади поверхности полученного отпечатка.

    Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С). Вдавли­вание производится под действием двух нагрузок — предваритель­ной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.

    В методе Виккерса применяют вдавливание алмазной четырех­гранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.

    Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сече­ния F; Дж/м2:

    KC=A/F

    Испытания проводятся ударом специального маятникового коп­ра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.
    1.3. Технология материалов и технологические свойства
    Технология материалов представляет собой совокупность совре­менных знаний о способах производства материалов и средствах их переработки в целях изготовления изделий различного назначе­ния. Металлы и сплавы производят путем выплавки при высоких температурах из различных металлических руд. Отрасль промыш­ленности, занимающаяся производством металлов и сплавов, называ­ется металлургией. Полимеры (пластмассы, резина, синтетические волокна) изготовляются чаще всего с помощью процессов органичес­кого синтеза. Исходным сырьем при этом служат нефть, газ, камен­ный уголь.

    Готовые изделия и заготовки для дальнейшей обработки из ме­таллов и сплавов производятся путем литья или обработки давлени­ем. Литейное производство занимается изготовлением изделий пу­тем заливки расплавленного металла в специальную форму, внутренняя полость которой имеет конфигурацию изделия. Различают литье в песчаные формы (в землю) и специальные способы литья.

    Песчаные литейные формы изготовляются путем уплотнения формовочных смесей, основой которых является кварцевый песок, К специальным способам относится литье в кокиль, литье под давлением, центро­бежное литье, литье в оболочковые формы, литье по выплавляемым моделям. Кокиль — это специальная металлическая форма. При литье под давлением заливка металла в металлическую форму и его засты­вание происходит под избыточным давлением. При центробежном литье металл заливается во вращающуюся металлическую форму. Оболочковые формы состоят из мелкого песка со связующим. При литье по выплавляемым моделям керамическая форма изготовляется путем погружения модели из легкоплавкого материала (парафина, стеарина) в керамическую суспензию и последующей выплавки мо­дели из формы. Сплавы, предназначенные для получения деталей литьем, называются литейными.

    Обработкой металлов давлениемназывают изменение формы заготовки под воздействием внешних сил. К видам обработки металлов давлением относятся прокатка, прессование, волочение, ковка и штамповка. Прокатка заключается в обжатии заготовки между вра­щающимися валками. При прессовании металл выдавливается из зам­кнутого объема через отверстие. Волочение заключается в протягива­нии заготовки через отверстие. Ковкой называется процесс свободного деформирования металла ударами молота или давлением пресса. Штамповкой получают детали с помощью специального инструмен­та — штампа, представляющего собой металлическую разъемную фор­му, внутри которой расположена полость, соответствующая конфигу­рации детали. Сплавы, предназначенные для получения деталей обработкой давлением, называют деформируемыми.

    Сравнительно новым направлением производства металлических деталей является порошковая металлургия, которая занимается про­изводством деталей из металлических порошков путем прессования и спекания.

    Изделия из пластмасс получают путем прессования, литья или выдавливания. Резиновые изделия получают обработкой между вала­ми (каландрированием), выдавливанием, прессованием или литьем с последующей вулканизацией (см. раздел, 7.2.).Изделия из керами­ческих материалов получают путем формования и обжига или прес­сования и спекания.

    Сваркой называется технологический процесс получения неразъ­емных соединений материалов путем установления межатомных связей между свариваемыми частями при их нагреве или пластическом де­формировании или совместном действии того и другого. Сваркой соединяют однородные и разнородные металлы и их сплавы, метал­лы с некоторыми неметаллическими материалами (керамикой, гра­фитом, стеклом), а также пластмассы.

    Заключительной стадией изготовления изделий часто является обработка резанием, заключающаяся в снятии с заготовки режущим инструментом слоя материала в виде стружки. В результате этого заготовка приобретает правильную форму, точные размеры, необхо­димое качество поверхности.

    Технологические свойства определяют способность материалов подвергаться различным видом обработки. Литейные свойства харак­теризуются способностью металлов и сплавов в расплавленном состоя­нии хорошо заполнять полость литейной формы и точно воспроизво­дить ее очертания (жидкотекучестъю), величиной уменьшения объема при затвердевании (усадкой), склонностью к образованию трещин и пор, склонностью к поглощению газов в расплавленном состоянии. Ковкость — это способность металлов и сплавов подвергаться различ­ным видам обработки давлением без разрушения. Свариваемость опре­деляется способностью материалов образовывать прочные сварные сое­динения. Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.
    1.4. Физические, химические и эксплуатационные свойства материалов
    К физическим свойствам материалов относится плотность, тем­пература плавления, электропроводность, теплопроводность, магнит­ные свойства, коэффициент температурного расширения и др.

    Плотностью называется отношение массы однородного матери­ала к единице его объема.

    Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые кон­струкции должны быть легкими и прочными.

    Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже темпе-

    ратура плавления металла, тем легче протекают процессы его плав­ления, сварки и тем они дешевле.

    Электропроводностью называется способность материала хоро­шо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, осо­бенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важ­ным свойством, используемом в электроизоляционных материалах.

    Теплопроводность — это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.

    Магнитными свойствами т.е. способностью хорошо намагничи­ваться обладают только железо, никель, кобальт и их сплавы.

    Коэффициенты линейного и объемного расширения характеризу­ют способность материала расширяться при нагревании. Это свой­ство важно учитывать при строительстве мостов, прокладке желез­нодорожных и трамвайных путей и т.д.

    Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способнос­тью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различ­ных агрессивных сред называется коррозионной стойкостью (см. раз­дел 5.2), а аналогичная способность неметаллических материалов — химической стойкостью.

    К эксплуатационным (служебным) свойствам относятся жаро­стойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.

    Жаростойкость характеризует способность металлического ма­териала сопротивляться окислению в газовой среде при высокой температуре.

    Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.

    Износостойкость — это способность материала сопротивлять­ся разрушению его поверхностных слоев при трении.

    Радиационная стойкость характеризует способность материала сопротивляться действию ядерного облучения.
      1   2   3   4   5   6   7


    написать администратору сайта