Конспект лекций по дисциплине технология конструкционных материалов раздел материаловедение
Скачать 0.99 Mb.
|
6.3. Сплавы других цветных металлов Магний и его сплавы. Магний — самый легкий металл, используемый в промышленности (плотность — 1,74 г/см³). Имеет гексагональную плотноупакованную решетку и полиморфных превращений не претерпевает. Температура плавления магния — 651°С. Недостатками магния являются низкая прочность и пластичность, низкая коррозионная стойкость, способность к возгоранию при нагреве. Поэтому чистый магний в качестве конструкционного материала не используется. Свойства магния значительно улучшаются при сплавлении его с другими элементами, основные из которых — алюминий, марганец и цинк. Магниевые сплавы делятся на литейные и деформируемые. Литейные сплавы маркируются буквами МЛ, а деформируемые — МА. За буквами следует условный номер сплава. Магниевые сплавы, как и алюминиевые способны к упрочняющей термообработке (закалке и старению), но эффект повышения прочности при этом невысок. Основное преимущество сплавов магния — легкость. Поэтому они применяются в авиа- и ракетостроении. Сплавы магния хорошо свариваются и обрабатываются резанием, но имеют невысокую коррозионную стойкость. Титан и его сплавы. Титан — легкий (плотность 4,5 г/см3) и пластичный металл серебристо-белого цвета. Температура плавления титана — 1665 °С. Он обладает низкой электропроводностью и теплопроводностью. Механические свойства титана: σв ≈ З00 МПа, δ = 60…70 %. Главное достоинство титана и его сплавов — высокая коррозионная стойкость. Она достигается за счет образования на его поверхности плотной оксидной пленки. Недостатки титана — склонность к взаимодействию с газами при температурах выше 500…600°С, плохая обрабатываемость резанием, высокая стоимость. Главная цель легирования титана — повышение механических свойств. Основными легирующими элементами являются алюминий, хром, молибден, ванадий, марганец. По технологическому признаку сплавы титана делятся на литейные и деформируемые. Маркируются титановые сплавы чаще всего буквами ВТ. Среди сплавов титана имеются обладающие высокой прочностью (ВТ6, ВТ14 с σв = 1000…1200 МПа), жаропрочностью до 500 °С (ВТЗ-1, ВТ8). Литейные сплавы титана (ВТ5Л, ВТ6Л) обладают хорошими литейными свойствами. Используются титановые сплавы в химической промышленности благодаря высокой коррозионной стойкости, в ракетной и авиационной технике благодаря легкости и высокой удельной прочности. Другие цветные металлы нашли меньшее применение в технике. Тугоплавкие металлы (вольфрам, молибден, хром, тантал, ниобий) и никель, а также их сплавы используются как жаропрочные. Сплавы легкоплавких металлов (олова, цинка, свинца) используются в подшипниках скольжения (эти сплавы называются баббиты) и в качестве припоев для пайки металлов. Кроме того, значительная часть цинка расходуется на нанесение покрытий на металлические изделия, олова — на лужение консервной жести, свинца — на изготовление оболочек электрических кабелей, производство свинцовых аккумуляторов, емкостей для хранения радиоактивных материалов. 7. НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ 7.1. Пластические массы Свойства, состав и классификация пластмасс. Пластическими массами (пластмассами) называются материалы, получаемые на основе природных или синтетических полимеров. Пластмассы являются важнейшими современными конструкционными материалами. Они обладают рядом ценных свойств: малой плотностью (до 2 г/см³), высокой удельной прочностью, низкой теплопроводностью, химической стойкостью, хорошими электроизоляционными свойствами, звукоизоляционными свойствами. Некоторые пластмассы обладают оптической прозрачностью, фрикционными и антифрикционными свойствами, стойкостью к истиранию и др. Кроме того, пластмассы имеют хорошие технологические свойства: легко формуются, прессуются, обрабатываются резанием, их можно склеивать и сваривать. Недостатками пластмасс являются низкая теплостойкость, низкая ударная вязкость, склонность к старению для ряда пластмасс. Основой пластмасс являются полимерные связующие вещества. Кроме связующих в состав пластмасс входят: наполнители для повышения прочности и придания специальных свойств; пластификаторы для повышения пластичности, что необходимо при изготовлении изделий из пластмасс; отвердители, ускоряющие переход пластмасс в неплавкое, твердое и нерастворимое состояние; стабилизаторы, предотвращающие или замедляющие процесс старения; красители. По поведению при нагреве все пластмассы делятся на термопластичные и термореактивные. Термопластичные при неоднократном нагревании и охлаждении каждый раз размягчаются и затвердевают. Термореактивные при нагревании размягчаются, затем еще до охлаждения затвердевают (вследствие протекания химических реакций) и при повторном нагревании остаются твердыми. По виду наполнителя пластмассы делятся на порошковые, волокнистые, слоистые, газонаполненные и пластмассы без наполнителя. По способу переработки в изделия пластмассы подразделяются на литьевые и прессовочные. Литьевые перерабатываются в изделия методами литьевого прессования и являются термопластичными. Прессовочные перерабатываются в изделия методами горячего прессования и являются термореактивными. По назначению пластмассы делятся на конструкционные, химически стойкие, прокладочные и уплотнительные, фрикционные и антифрикционные, теплоизоляционные и теплозащитные, электроизоляционные, оптически прозрачные, облицовочно-декоративные и отделочные. Слоистые пластмассы получают прессованием (или намоткой) слоистых наполнителей, пропитанных смолой. Они обычно выпускаются в виде листов, плит, труб, из которых механической обработкой получают различные детали. Текстолит — это материал, полученный прессованием пакета кусков хлопчатобумажной ткани, пропитанной смолой. Обладает хорошей способностью поглощать вибрационные нагрузки, электроизоляционными свойствами. Теплостоек до 80°С. Стеклотекстолит отличается от текстолита тем, что в качестве наполнителя используется стеклоткань. Более прочен и теплостоек, чем текстолит, имеет лучшие электроизоляционные свойства. В асботекстолите наполнителем является асбестовая ткань. Кроме электроизоляционных, он имеет хорошие теплоизоляционные и фрикционные свойства. Гетинакс представляет собой материал, полученный прессованием нескольких слоев бумаги, пропитанной смолой. Он обладает электроизоляционными свойствами, устойчив к действию химикатов, может применяться при температуре до 120-140°С. Стекловолокнистый анизотропный матерная (СВАМ) получают прессованием листов стеклошпона, пропитанных смолой. Стеклошпон изготовляется из стеклянных нитей, которые склеиваются между собой сразу после изготовления. Листы стеклошпона располагаются в материале так, чтобы волокна соседних листов располагались под углом 90°. СВАМ обладает высокой прочностью, хорошими электроизоляционными свойствами, теплостоек до 200…400 °С. Волокнистые пластмассы представляют собой композиции из волокнистого наполнителя, пропитанного смолой. Они делятся на волокниты, асбоволокниты и стекловолокниты. В волокнитах в качестве наполнителя применяется хлопковое волокно. Они используются для относительно крупных деталей общетехнического назначения с повышенной стойкостью к ударным нагрузкам. Асбоволокниты имеют наполнителем асбест — волокнистый минерал, расщепляющийся на тонкое волокно диаметром 0,5 мкм. Обладают теплостойкостью до 200 °С, устойчивостью к ударным воздействиям, химической стойкостью, электроизоляционными и фрикционными свойствами. Стекловолокниты имеют в качестве наполнителя короткое стекловолокно или стеклонити. Прочность, электроизоляционные свойства и водостойкость стекловолокнитов выше, чем у волокиитов. Применяются для изготовления деталей, обладающих повышенной прочностью. Порошковые пластмассы в качестве наполнителя используют органические порошки (древесная мука, порошкообразная целлюлоза) и минеральные порошки (молотый кварц, тальк, цемент, графит). Эти пластмассы обладают невысокой прочностью, низкой ударной вязкостыо, электроизоляционными свойствами. Пластмассы с органическими наполнителями применяются для ненагруженных деталей общетехнического назначения — корпусов приборов, рукояток, кнопок. Минеральные наполнители придают порошковым пластмассам химическую стойкость, водостойкость, повышенные электроизоляционные свойства. Рассмотренные выше пластмассы со слоистыми, волокнистыми и порошковыми наполнителями имеют чаше всего термореактивные связующие, хотя имеются пластмассы с термопластичными связующими. Пластмассы без наполнителя чаще всего являются термопластичными материалами. Рассмотрим наиболее важные из них. Полиэтилен (-СН2—СН2-)n — продукт полимеризации бесцветного газа — этилена. Один из самых легких материалов (плотность 0,92 г/см³), имеет высокую эластичность, химически стоек, морозостоек. Недостатки — склонность к старению и невысокая теплостойкость (до 60 °С). Используется для изготовления пленки, изоляции проводов, изготовления коррозионно-стойких труб, уплотнительных деталей. Занимает первое место в общем объеме производства пластмасс. Полипропилен (-СН2-СНС6Н5-)n — продукт полимеризации газа пропилена. По свойствам и применению аналогичен полиэтилену, но более теплостоек (до 150 °С) и менее морозостоек (до 10 °С). Поливинилхлорид (-СН2-СНС1-)n используется для производства винипласта и пластиката. Винипласт представляет собой твердый листовой материал, полученный из поливинилхлорида без добавки пластификаторов. Обладает высокой прочностью, химической стойкостью, электроизоляционными свойствами. Пластикат получают при добавлении в поливинилхлорид пластификаторов, повышающих его пластичность и морозостойкость. Полистирол (-СН2-СНС6Н5-)n — твердый, жесткий, прозрачный полимер. Имеет очень хорошие электроизоляционные свойства. Его недостатки — низкая теплостойкость, склонность к старению и растрескиванию. Используется в электротехнической промышленности. Органическое стекло — прозрачный термопластичный материал на основе полиакриловой смолы. Отличается высокой оптической прозрачностью, в 2 раза легче минеральных стекол, обладает химической стойкостью. Недостатки — низкая твердость и низкая теплостойкость. Используется для остекления в автомобиле- и самолетостроении, для прозрачных деталей в приборостроении. Фторопласты имеют наибольшую термическую и химическую стойкость из всех термопластичных полимеров. Фторопласт-4 (-СF2-СF2)n водостоек, не горит, не растворяется в обычных растворителях, обладает электроизоляционными и антифрикционными свойствами. Применяется для изготовления изделий, работающих в агрессивных средах при высокой температуре, электроизоляции и др. Фторопласт-3 (-СF2-СFС1-)n по свойствам и применению аналогичен фторопласту-4, уступая ему по термохимической стойкости и превосходя по прочности и твердости. Газонаполненные пластмассы представляют собой материалы на основе синтетических смол, содержащие газовые включения. В пенопластах поры, заполненные газом, не соединяются друг с другом и образуют замкнутые объемы. Они отличаются малой плотностью (0,02…0,2 г/см3), высокими тепло-, звуко- и электроизоляционными свойствами, водостойкостью. Недостатки пенопластов — низкая прочность и низкая теплостойкость (до 60°С). Используются для теплоизоляции и звукоизоляции, изготовления непотопляемых плавучих средств, в качестве легкого заполнителя различных конструкций. Мягкие виды пенопластов используются для изготовления мебели, амортизаторов и т. п. Поропласты — это газонаполненные пластмассы, поры которых сообщаются между собой. Их плотность составляет 0,02…0,5 г/см3. Они представляют собой мягкие эластичные материалы, обладающие водопоглощением. 7.2. Резиновые материалы Резина представляет собой искусственный материал, получаемый в результате специальной обработки резиновой смеси, основным компонентом которой является каучук. Каучук — это полимер, отличительной особенностью которого является способность к очень большим обратимым деформациям при небольших нагрузках. Это свойство объясняется строением каучука. Его макромолекулы имеют вытянутую извилистую форму. При нагрузке происходит выпрямление макромолекул, что и объясняет большие деформации. При разгрузке макромолекулы принимают исходную форму. Различают натуральный и синтетический каучук. Натуральный каучук добывают из некоторых видов тропических растений в незначительных количествах. Поэтому производство резины основано на применении синтетических каучуков. Сырьем для производства синтетическою каучука служит спирт, на смену которому приходит нефтехимическое сырье. Резину получают из каучука путем вулканизации, т. е. в процессе химического взаимодействия каучука с вулканизатором при высокой температуре, вулканизатором чаще всею является сера. В процессе вулканизации сера соединяет нитевидные молекулы каучука и образуется пространственная сетчатая структура. В зависимости от количества серы получается различная частота сетки. При введении 1…5 % серы образуется редкая сетка и резина получается мягкой. С увеличением содержания серы сетка становится все более частой, а резина более твердой приблизительно при 30 % серы получается твердый материал, называемый эбонитом. Кроме каучука и вулканизатора в состав резины входит ряд других веществ. Наполнители вводят в состав резины от 15 до 50 % к массе каучука. Активные наполнители (сажа, оксид цинка и др.) служат для повышения механических свойств резин. Неактивные наполнители (мел, тальк и др.) снижают стоимость резиновых изделий. Пластификаторы (парафин, вазелин, стеариновая кислота, мазут, канифоль и др.) предназначены для облегчения переработки резиновой смеси, повышения эластичности и морозостойкости резины. Противостарители служат для замедления процесса старения резины, приводящего к ухудшению ее эксплуатационных свойств. Красители служат для придания резине нужного цвета. В резину также добавляются регенераты — продукты переработки старых резиновых изделий и отходы резинового производства. Они снижают стоимость резин. Основное свойство резины — очень высокая эластичность. Резина способна к большим деформациям, которые почти полностью обратимы. Кроме того, резина характеризуется высоким сопротивлением разрыву и истиранию, газо- и водонепроницаемостью, химической стойкостью, хорошими электроизоляционными свойствами, небольшой плотностью, малой сжимаемостью, низкой теплопроводностью. По назначению резины подразделяются на резины общего и специального назначения. Из резин общего назначения изготовляются автомобильные шины, транспортерные ленты, ремни ременных передач, изоляция кабелей, рукава и шланги, уплотнительные и амортизационные детали, обувь и др. Резины общего назначения могут использоваться в горячей воде, слабых растворах щелочей и кислот, а также на воздухе при температуре от -10 до +150 °С. Резины специального назначения подразделяются на теплостойкие, которые могут работать при температуре до 250…350 °С; морозостойкие, выдерживающие температуру до -70 °С; маслобензостойкие, работающие в среде бензина, других топлив, масел и нефтепродуктов; светоозоностойкие, не разрушающиеся при работе в атмосферных условиях в течении нескольких лет, стойкие к действию сильных окислителей; электроизоляционные, применяемые для изоляции проводов и кабелей; электропроводящие, способные проводить электрический ток. 7.3. Неорганические материалы Стеклом называется твердый аморфный термопластичный материал, получаемый переохлаждением расплава различных оксидов. В состав стекла входит стеклообразующие кислотные оксиды (SiO2, А12О3, В2О3 и др.), а также основные оксиды (К2О, СаО, Na2О и др.), придающие ему специальные свойства и окраску. Оксид кремния SiO2 является основой практически всех стекол и входит в их состав в количестве 50 … 100 %. По назначению стекла подразделяются на строительные (оконные, витринные и др.), бытовые (стеклотара, посуда, зеркала и др.) и технические (оптические, свето- и электротехнические, химико-лабораторные, приборные и др.). Важными свойствами стекла являются оптические. Обычное стекло пропускает около 90 %, отражает — 8 % и поглощает — 1 % видимого света. Механические свойства стекла характеризуются высоким сопротивлением сжатию и низким — растяжению. Термостойкость стекла определяется разностью температур которую оно может выдержать без разрушения при резком охлаждении в воде. Для большинства стекол термостойкость колеблется от 90 до 170 °С, а для кварцевого стекла, состоящего из чистого SiO2— 1000 °С. Основной недостаток стекла — высокая хрупкость. Керамика — это неорганический минеральный материал, получаемый из отформованного минерального сырья путем спекания при высоких температурах (1200…2500 °С). Структура керамики состоит из кристаллической, стекловидной (аморфной) и газовой фазы. Криcталлическая фаза является основой керамики, ее количество соcтавляет до 100 %. Она представляет собой различные химические соединения и твердые растворы. Стекловидная фаза находится в керамике в виде прослоек стекла. Ее количество составляет до 40 %. Она снижает качество керамики. Газовая фаза представляет собой газы, находящиеся в порах керамики. По назначению керамика может быть разделена на строительную, бытовую и художественно-декоративную, техническую. Строительная ( например, кирпич) и бытовая (например, посуда) чаще всего имеет в структуре газонаполненные поры и изготовляется из глины. Техническая керамика имеет почти однофазную кристаллическую структуру и изготовляется из чистых оксидов (реже карбидов, боридов или нитридов). Основные оксиды, используемые для производства керамики — А12О3, ZnО2, МgО, СаО, ВеО. Техническая керамика используется в качестве огнеупорного, конструкционного и инструментального материала. Она обладает высокой прочностью при сжатии и низкой при растяжении. Главный недостаток керамики, как и стекла — высокая хрупкость. Ситаллы представляют собой материалы, полученные путем кристаллизации стекол. Ситаллы изготовляют путем плавления стекольного материала с добавкой катализаторов кристаллизации. Далее расплав охлаждается до пластического состояния и из него формуются изделия. Кристаллизация обычно происходит при повторном нагревании изделий. По структуре ситаллы занимают промежуточное место между стеклом и керамикой. Их структура состоит из зерен кристаллической фазы, скрепленных стекловидной прослойкой. Содержание кристаллической фазы составляет 30…95 %. Пористость отсутствует. Ситаллы характеризуются исключительной мелкозернистостью. По внешнему виду могут быть прозрачными и непрозрачными. Структура ситаллов определяет их свойства. Ситаллы имеют высокую твердость, высокую прочность при сжатии и низкую при растяжении, обладают жаропрочностью до 900…1200 °С, жаростойкостью, износостойкостью. Они характеризуются высокой химической стойкостью и хорошими электроизоляционными свойствами. Ситаллы отличаются хрупкостью, однако меньшей, чем стекло. Применяются ситаллы для деталей, работающих при высоких температурах и в агрессивных средах, деталей радиоэлектроники, инструментов. |