Конспект лекций СДВС 2014. Конспект лекций по курсу двс (сдвс) Николаев 2014 Содержание
Скачать 4 Mb.
|
Подвесной коленчатый вал в двигателях без фундаментной рамы лежит на жестких крышках (подвесках) 2, изготовленных из стального литья или поковки. Крепится подвеска шпильками 3 с усилием затяжки, превышающим усилие от максимального давления сгорания. В высокофорсироваиных ВОД и СОД, чтобы исключить деформацию подшипникового узла, подвесные крышки 2 соединяют с картером 5 горизонтальными связями 4 (рис. 3.4, д). Надежная фиксация крышек относительно фундаментной рамы или картера обеспечивается применением направляющих пазов и замков. От проворачивания и осевого смещения в корпусе подшипника толстостенные вкладыши фиксируют закраинами и штифтами, а тонкостенные – штифтами или отогнутыми выступами (усиками), которые входят в углубления у разъема в корпусе подшипника. В судовых условиях нижние вкладыши могут быть удалены без подъема коленчатого вала выкатыванием из постели. Для фиксации коленчатого вала во время работы двигателя один из рамовых подшипников (чаще кормовой) выполняют установочным. Его вкладыши снабжают опорными 1 и упорными 2 поверхностями, залитыми антифрикционным сплавом. В них упираются обработанные кольцевые поверхности щек 3 и кольцевой гребень (бурт) 4 вала (рис. 3.4, е). Некоторые МОД и СОД имеют встроенные главные упорные подшипники, воспринимающие упор гребного винта. В таких двигателях надобность в установочных подшипниках отпадает. Масло для смазывания и охлаждения подшипника подводят через его крышку (рис. 3,4 в) или постель (рис. 3.4, г) и далее по сверлениям или кольцевым канавкам к холодильникам в плоскости разъема, способствующим распределению масла по длине шейки вала и образованию масляного клина. Для повышения несущей способности подшипника холодильники не доводят до краев вкладыша, а круговую канавку выполняют только на верхнем вкладыше. Картер (станина) двигателя. Картер служит для соединения цилиндров с фундаментной рамой, образует закрытое пространство для КШМ. Он подвергается растяжению от действия максимальной силы давления газов при отсутствии анкерных связей и сжатию усилием предварительной затяжки при наличии их, а также изгибу в крейцкопфных двигателях от действия нормального усилия. Для МОД с ре до 1,1 МПа картер выполнялся из отдельных А-образных сварных или литых стоек 2 с каналами а под анкерные связи, устанавливаемые в плоскости поперечных балок фундаментной рамы 1 (рис. 3.5, а). Жесткость конструкции обеспечивалась креплением стоек к усиленной фундаментной раме и блоку цилиндров, а также боковыми щитами, закрывающими пространство между стойками. Такая конструкция (с большим количеством разъемов) в современных МОД с высокими рz не может обеспечить требуемую жесткость остова. Поэтому в длинноходовых форсированных МОД перешли на сварные коробчатые конструкции 1 (рис. 3.5, б) которые, несмотря на увеличение бокового усилия, создают достаточную прочность и жесткость остова, упрощают сборку двигателя, повышают его герметичность. К фланцам на А-образных стойках или к поперечным листам коробчатых станин крепят вертикальные чугунные или стальные направляющие (параллели), которые воспринимают боковое усилие, передаваемое ползунами крейцкопфа. Параллели бывают одно- и двусторонними. Односторонние параллели 4 (рис. 3.5, в) располагают с одной стороны от детален движения в плоскости, проходящей через ось цилиндра. Они имеют съемные обратные щеки 3, воспринимающие боковые усилия при изменении направления их действия. Двусторонние параллели 1 (рис. 3.5, г), имеющие четыре направляющих поверхности и работающие попарно, крепят по обе стороны от деталей КШМ в плоскостях, смещенных от оси цилиндра. Картеры СОД с D > 200 мм во всех случаях выполняют литыми или сварными коробчатого типа (блок-станины). Особенности их конструкции определяют общей компоновкой остова (рис. 3.3). Для крепления двигателя с подвесным валом к судовому фундаменту в нижней части картера выполняют лапы (рис. 3.3, г, д). Рис. 3.5. Станины двигателей: а – из отдельных стоек; б – коробчатая; в, г – параллели В боковых щитах станин или стенках картеров и блок-картеров выполняют люки с крышками для доступа внутрь картера с целью осмотра, ремонта и замены элементов КШМ. По Правилам Регистра на крышках люков должны быть установлены предохранительные клапаны на случай взрыва паров масла при перегревах или заеданиях. На картерах или блок-картерах СОД и ВОД обычно размещают распределительные валы, элементы механизма газораспределения, ТНВД, воздухораспределители, регуляторы и другие устройства. В МОД А-образные стойки и картеры отливают из чугунов СЧ20, СЧ30 или сваривают из стального проката. Поперечные перегородки сварно-литых картеров с постелями для коренных подшипников подвесных валов отливают из сталей 15Л, 35Л. Картеры и блок-картеры ВОД для уменьшения массы двигателя могут отливаться из сплавов АЛ5 и АЛ9. Рабочий цилиндр Рабочим цилиндром называется часть двигателя, где осуществляется рабочий цикл. Цилиндр состоит из рубашки и вставной втулки рабочего цилиндра. Во втулке движется поршень и протекают рабочие процессы. Рубашка является опорой для втулки и образует полости охлаждения для нее. Цилиндры устанавливают на верхнюю обработанную плоскость станины или картера и закрепляют шпильками или чаще всего анкерными связями. В зависимости от способа крепления рубашка растягивается усилием от давления газов или сжимается усилием затяжки анкерных связей. В тронковых двигателях рубашки нагружены также нормальным усилием КШМ. Для ВОД и СОД рубашки цилиндров выполняют в виде блока для всех цилиндров (рис. 3.6, а) или общей отливки с картером (рис. 3.3, б, г). Для МОД изготовляют отдельные рубашки на каждый цилиндр с последующим соединением их в вертикальной плоскости призонными болтами или шпильками в общий блок (рис. 3.6, б). Индивидуальные, не соединенные между собой, рубашки применяют крайне редко в СОД большой мощности из соображений быстрой сборки и разборки цилиндра и КШМ. Такое решение возможно только при наличии в двигателе картера повышенной жесткости. Рис. 3.6. Рубашки цилиндров дизелей: а – четырехтактного; 6 – двухтактного; в – сальник штока Обычно рубашку делают коробчатой конструкции (рис. 3.6, а), состоящей из верхней 5 и нижней 2 горизонтальных плит с отверстиями для цилиндровых втулок, вертикальных боковых стенок 4 и поперечных перегородок 3 с каналами а для анкерных связей. В верхней плите 5 выполнены также глухие нарезные сверления для крышечных шпилек. Дополнительную горизонтальную перегородку 1, расположенную ближе к верхней плите, делают иногда для повышения жесткости конструкции и улучшения режима охлаждения втулок. В рубашках двухтактных двигателей кроме полостей охлаждения должны быть выполнены каналы или полости для продувочного воздуха и каналы для отвода отработавших газов. В рубашках должны быть также выполнены отверстия для входа и выхода охлаждающей воды, отверстия, закрываемые крышками для осмотра и очистки зарубашечного пространства, установлены штуцера для подвода смазки к втулке рабочего цилиндра и т. д. У крейцкопфных двигателей в нижней части рубашек (рис. 3.6, б, в) выполняют диафрагму 1 с сальником для отделения внутрикартерного пространства от подпоршневой полости и уплотнения отверстий в местах прохода штоков поршней. Сальник штока (рис. 3.6, в) имеет чугунный корпус 2 с канавками для колец. В верхних канавках установлены уплотнительные кольца 4, препятствующие проникновению продувочного воздуха в картер, а в нижних – маслосъемные кольца 3, предотвращающие попадание масла из картера в ресивер. Масло, снятое кольцами, отводится в картер. Сальник можно разбирать, не удаляя шток, так как корпус сальника выполнен разъемным из двух половин, а кольца состоят из нескольких частей. Все кольца прижимаются к штоку поршня спиральными пружинами 5. Рубашки выполняют литыми из чугуна СЧ20, СЧ30 и реже стальными сварными в связи с коррозией, снижающей прочностные показатели изделия. Втулка рабочего цилиндра. Втулка вместе с крышкой цилиндра и движущимся поршнем образуют переменный объем, в котором осуществляется рабочий цикл. В тронковых двигателях втулка является направляющей для поршня. Для четырехтактных двигателей втулку делают в виде тонкостенного цилиндра с переменным сечением по высоте (рис. 3.7, а). Конструкция втулок двухтактных двигателей (рис. 3.7, в) отличается наличием окон, необходимых для газообмена. Внутреннюю поверхность втулок (зеркало) тщательно обрабатывают, чтобы уменьшить трение поршня и колец. Втулку выполняют вставной, что упрощает ее изготовление и замену при ремонте. Втулка рабочего цилиндра работает в сложных условиях. Действие высокого давления газов, нормальной силы КШМ в тронковых двигателях и силы заедания поршня (в экстремальных случаях) вызывают в элементах втулки механические напряжения. Силы трения от действия нормальной силы в тронковых двигателях и давления поршневых колец вызывают износ рабочей поверхности втулки. При использовании тяжелых высокосернистых топлив из-за коррозионного воздействия продуктов сгорания серы усиливается износ зеркала цилиндра. Нагрев втулки газами высокой температуры вызывает в ее стенках температурные напряжения, которые в сумме с механическими могут привести к деформации или разрушению втулки. Со стороны водяной полости поверхности втулки и рубашки подвергаются коррозионному разрушению и кавитационной эрозии, являющейся следствием вибрации втулки. Рис. 3.7. Цилиндровые втулки дизелей: а, б – четырехтактного; в – двухтактного; г, ж – способы охлаждения верхней части втулки В судовых ДВС в основном применяются мокрые втулки, омываемые водой со стороны зарубашечного пространства. Такие втулки обеспечивают лучший теплоотвод и легко заменяются при необходимости. Устанавливаются втулки в расточенные отверстия верхней и нижней плит рубашки и центрируются в них опорными поясами. Втулка (рис. 3.7, а) фиксируется только в верхней части с помощью бурта (фланца) 2, прижимаемого крышкой 1 к верхней плите блока, поэтому при нагревании она может свободно расширяться в осевом направлении. Уплотнение верхнего пояса 3 втулки производится в ВОД по притертым опорным поверхностям, а в СОД и МОД – с помощью герметизирующих паст. Чтобы исключить протечки воды в картер, средний 4 и нижний 5 посадочные пояса уплотняются резиновыми кольцами 6 круглого или прямоугольного сечения, которые устанавливаются в канавки на поверхности втулки. В двухтактных двигателях средний пояс 1 втулки, где находятся окна 2 для газообмена, уплотняется резиновыми 3 и медными 4 кольцами. Последние устанавливают на втулке ближе к горячим каналам выпускных окон, а резиновые – ближе к водяной полости (рис. 3.7, в). Газовый стык между втулкой и крышкой уплотняется путем притирки сопрягаемых поверхностей либо установкой в кольцевую проточку верхнего торца втулки медной или стальной омедненной прокладки. В некоторых СОД с пониженной удельной массой применяют подвесные втулки 3, которые крепятся к крышке цилиндра 1 отдельными шпильками 2, а крышка – к блоку крышечными шпильками (рис. 3.7, б). Такое крепление втулки позволяет снизить влияние монтажной деформации блока цилиндров на геометрическую форму втулки и допускает увеличение размера нижней головки шатуна, необходимого для выемки его через цилиндр, до величины наружного диаметра втулки. Снабжение подвесной втулки охлаждающей рубашкой 4 позволяет защитить сварной блок 5 от коррозии. При проектировании втулок необходимо обеспечить хорошее охлаждение их верхнего пояса, чтобы сохранить слой смазочного масла в зоне верхнего поршневого кольца. Практика конструирования показывает, что в СОД с D< 400 мм и ре до 1,8 МПа достаточно обычного опорного бурта, если зона охлаждения в рубашке доведена до опорной части бурта (рис. 3.7, г). Применение оребренной втулки с охватывающим ее бандажом позволяет повысить прочность и жесткость детали без увеличения толщины стенки, снизить температуру стенки за счет увеличения скорости воды в каналах между ребрами 1 и бандажом 2 (рис. 3.7, д). Охлаждение верхней части втулки путем прокачки охлаждающей воды через глухие радиальные сверления 1, выполненные в опорном бурте 2 втулки (рис. 3.7, е), обеспечивает более стабильное температурное поле при различной нагрузке двигателя. В высокофорсированных СОД и МОД применяют втулки с высоким толстостенным буртом. В нем по касательным выполнены наклонные сверления 2, пересекающиеся с радиальными 1 (рис. 3.7, ж). В таких втулках уровень механических напряжений определяется толщиной бурта, а тепловых напряжений – расположением охлаждающих отверстий относительно зеркала цилиндра. С целью повышения коррозионной и кавитационной стойкости втулок осуществляют специальную водоподготовку, регулярно очищают поверхности от продуктов коррозии и накипи, окрашивают, хромируют или кадмируют ее наружную поверхность, уменьшают вибрацию втулки, повышают температуру охлаждающей воды. Ресурс втулки во многом зависит от качества смазывания ее рабочей поверхности. В ВОД и СОД смазывание втулки обеспечивается масляным туманом, образующимся при разбрызгивании масла, вытекающего из узлов трения. В МОД и некоторых СОД масло подается на зеркало цилиндра дозированными порциями через штуцера, смазочные отверстия а и маслораспределительные канавки а (рис. 3.7, в) специальным насосом лубрикатором. Втулки обычно изготовляют из чугуна марок СЧ30, СЧ35, легированные хромом, никелем, молибденом, а также из жаропрочного чугуна и стали марок 35ХМЮА и 38ХМЮА. Износостойкость рабочих поверхностей повышается при пористом хромировании чугунных и азотировании стальных втулок. Крышка рабочего цилиндра. Крышка закрывает и уплотняет рабочий цилиндр и образует вместе с поршнем и втулкой камеру сгорания, в ней размещены элементы систем, обеспечивающих работу двигателя. На крышку действуют усилия от затяжки крышечных шпилек и переменного давления газов, а также высокая тепловая нагрузка. Поэтому крышка должна иметь достаточные прочность и жесткость, а для поддержания необходимого температурного уровня элементов должна охлаждаться. В большинстве судовых ДВС крышка имеет коробчатую конструкцию, образованную верхним и нижним (огневым) днищами, соединенными вертикальными стенками. Форма крышки определяется типом двигателя, конструкцией камеры сгорания, количеством рабочих клапанов, формой каналов к ним, расположением форсунок. Для ВОД крышки часто выполняют блочными на весь двигатель или для группы в два-три цилиндра. Крышки СОД и МОД из условий изготовления и удобства монтажа всегда выполняют индивидуальными. Последние могут иметь в плане квадратную, шести- или восьмигранную и круглую форму. Крышки двухтактных двигателей с контурной продувкой имеют сравнительно простую конструкцию, поскольку в них отсутствуют выпускные клапаны и каналы к ним. При прямоточно-клапанной продувке выпускные клапаны не только усложняют конструкцию крышки, но и повышают ее тепловую напряженность. Крышки современных МОД с такой продувкой обычно оборудуют одним выпускным клапаном, СОД – двумя или четырьмя. Для лучшей продувки камеры сгорания огневым днищам одноклапанных или бесклапанных крышек МОД придают куполообразную (вогнутую) форму. Крышки четырехтактных СОД и ВОД имеют два или четыре рабочих клапана с каналами к ним сложной конфигурации. В этом случае будут наблюдаться неравномерный нагрев и повышенная температура элементов крышки. Б ВОД с разделенным смесеобразованием конструкция крышки усложнена из-за размещении в ней вихревой камеры или предкамеры. Огневые днища многоклапанных крышек всегда выполняют плоскими. Кроме рабочих клапанов в крышках помещают форсунку, индикаторный кран (в СОД и МОД), а в двигателях, запускаемых сжатым воздухом – пусковой клапан. На крышках двигателей с диаметром цилиндра более 300 мм должен быть установлен предохранительный клапан, В двигателях с непосредственным смесеобразованием форсунку, как правило, располагают по оси цилиндра, что способствует созданию симметричного температурного поля и улучшает смесеобразование. В двигателях с разделенным смесеобразованием положение форсунки определяется размещением в крышке предкамеры и вихревой камеры. В МОД с прямоточно-клапаннон продувкой при одном клапане в центре крышки устанавливают две форсунки, смещенные от оси цилиндра. Пусковые и индикаторные клапаны в СОД и МОД располагают на верхнем днище, в ВОД – на боковых ее стенках. Крышка воспринимает значительные тепловые потоки, поэтому при ее конструировании особое внимание уделяется снижению температуры и перепадов температур в огневом днище. В крышках СОД ре до 1,8 МПа широко применяют двойное дно (рнс. 3.8, а), образованное тонкостенным интенсивно охлаждаемым огневым днищем 1 и подкрепляющим его через клапанные каналы и наружную стенку утолщенным промежуточным днищем (перегородкой) 2. При высоких значениях давления сгорания жесткость тонкого огневого днища может оказаться недостаточной для того, чтобы сохранить правильную форму отверстий под клапаны. Поэтому в СОД с ре = 2,2 МПа и более применяют крышки с толстостенным огневым днищем 1 (рнс. 3.8, б), обладающим большой жесткостью. Для снижения температуры и температурных напряжений на небольшом расстоянии от тепловоспринимающей поверхности выполнены радиальные отверстия а. Рис. 3.8. Крышки цилиндров дизелей: а, б – четырехтактного; в, г, д – двухтактного В МОД с ре до 1,0 МПа для снижения тепловых напряжений были использованы составные крышки. На рис. 3.8, в представлена конструкция составной крышки колпачкового типа, выполненная из двух частей. Нижняя охлаждаемая часть 1 с тонкостенным огневым днищем отлита из жаростойкой стали, верхняя неохлаждасмая часть 2, воспринимающая механическую нагрузку и обеспечивающая жесткость всей конструкции – из чугуна. Конструкция, показанная на рис. 3,8, г, состоит из стальной внешней несущей части 1 и внутренней цилиндрической вставки из чугуна 2, в которой размещены форсунка, пусковой и предохранительный клапаны. Жесткая несущая часть состоит из тонкого огневого днища, сопрягаемого с утолщенным верхним днищем двумя кольцевыми поясами, образованными стенками крышки и стенкой горловины для центральной вставки. Симметричная форма крышки способствует снижению температурных и механических напряжений. В мощных высокофорснрованных МОД с ре = 1,2…1,5 МПа вместо крышек коробчатой конструкции применяют колпачковые крышки, выполненные в виде цельных поковок (плит) и обладающие высокой прочностью. Для снижения температуры нагретых частей в крышке вблизи от огневой поверхности выполняют сверления а для охлаждающей воды (рис. 3.8, д). Крышки охлаждают дистиллированной водой со специальными присадками, которая поступает из зарубашечного пространства блока в нижнюю часть крышки по наружным перепускным патрубкам или по внутренним трубкам. Чтобы охлаждение крышек было более эффективным, тщательно подбирают направление и скорость потоков охлаждающей воды. Например, в крышках с двойным дном (рис. 3.8, а, б) вначале вода по сверлениям а направляется вдоль огневого днища от периферии к центру, охлаждая днище, межклапанные перемычки, седла клапанов, газоотводные каналы, а затем верхнюю полость крышки. В крышках МОД интенсивного охлаждения добиваются путем закручивания потока воды с помощью тангенциально направленных патрубков (рис. 2.7, г) направленного движения воды по спиральным каналам (рис. 2.7, в), применения системы радиальных и касательных сверлений а на небольшой глубине от поверхности (рис. 2.7, д). Во многих двигателях для более интенсивного охлаждения водой перемычек между форсункой и газовоздушными каналами, а также для улучшения теплоотвода от форсунки, ее устанавливают не в литой канал, а в тонкостенный стакан, запрессованный в тело крышки. Из верхней части крышек отводят горячую воду, что исключает возможность образования в полости охлаждения паровоздушных «мешков». Крышки крепят к блоку цилиндров шпильками, ввернутыми в верхнюю плиту блока (рис. 3,7, а) или анкерными шпильками, доходящими до картера (рис. 3.3, д). Количество крышечных шпилек зависит от формы крышки. Квадратные крышки, применяемые в ВОД и некоторых СОД с минимальным шагом между цилиндрами, крепят четырьмя шпильками. Многогранные крышки в СОД и круглые в МОД крепят большим числом связей (от 6 до 20), что способствует равномерному нагру-жению крышек при их затяжке, но увеличивает расстояние между цилиндрами. Для уплотнения газового стыка между крышкой и втулкой под кольцевой уплотнительный бурт крышки ставят прокладку из какого-либо пластичного материала (меди, мягкой стали) или сопрягают уплотнительные поверхности крышки и втулки, шлифованные с помощью специального устройства с абразивной головкой или притира. Для равномерной и достаточной затяжки крышечных связей в СОД и МОД используют гидравлические домкраты, а в ВОД – динамометрические ключи. Крышки изготовляют из серых чугунов, легированных никелем, хромом, молибденом, высокопрочных чугунов, низколегированных сталей. Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Во время работы двигателя на поршень действует движущая сила Рдв одна из составляющих которой Q направлена по шатуну, другая (нормальная) N – перпендикулярно к оси цилиндра (рис. 3.9). Конструктивные особенности тронкового и крейцкопфного двигателей определяют состав элементов КШМ и место приложения нормальной силы. В состав КШМ тронковых двигателей входят поршень 8, шатун 2 и коленчатый вал 1 (рис. 3.9, а), крейцкопфных – поршень 2, шток 3, крейцкопф 4, шатун 5 и коленчатый вал 1. В тронковых двигателях нормальная сила прижимает поршень, выполняющий роль ползуна, к стенке цилиндра а, что способствует повышению тепловой и механической нагрузки пары поршень – цилиндр, усиливает износ ее из-за недостаточной смазки в зоне высоких температур. Нормальная сила зависит от силы давления газов на поршень и от параметра λш равного отношению радиуса кривошипа r к длине шатуна Lш. Для снижения давления поршня на стенку цилиндра в тронковых двигателях значение λш выбирают в пределах 1/3,6... 1/4,8. Рис. 3.9. Кривошипно-шатунный механизм двигателей: а – тронкового; б – крейцкопфного В крейцкопфных двигателях нормальная сила передается от шатуна через крейцкопф 4, состоящий из поперечины и ползуна, на параллели б. Благодаря этому рабочий цилиндр а разгружен от действия нормальной силы и при правильной центровке боковая поверхность поршни не соприкасается с зеркалом цилиндра, в результате чего трение и износ цилиндра уменьшаются. Пара ползун – параллель находится вне зоны высоких температур, что позволяет использовать баббит для заливки трущейся поверхности ползуна, обеспечить хорошее смазывание и охлаждение пары. Крейцкопф увеличивает высоту и массу двигателя. Для ограничения размеров по высоте в современных длинноходовых крейцкопфных двигателях λш увеличивают до значений 1/2,3... 1/2,8. Современные четырехтактные двигатели выполняют только тронковыми с диаметром цилиндра до 650 мм, двухтактные малооборотные двигатели – крейцкопфными с диаметром цилиндра 260 мм и выше. Поршневая группа. К деталям этой группы относят поршень, поршневой палец и детали его крепления (в тронковых двигателях), поршневые кольца, поршневой шток (в крейцкопфных двигателях). Поршень воспринимает силу от давления газов и передает ее через шатун на коленчатый вал. В тронковых двигателях он выполняет роль ползуна, передает нормальную силу на втулку, управляет газообменом в двухтактных двигателях. Механические нагрузки от сил давления газов и сил инерции вызывают напряжения в материале и деформацию поршня, высокие удельные давления на поверхностях сопрягаемых с ним деталей, нарушают его геометрическую форму, что, в свою очередь, усиливает трение и износ при движении. Тепловая нагрузка от действия горячих газов и трения вызывает нагрев и расширение поршня, а перепады температур в его теле – термические напряжения. В зависимости от типа КШМ, тактности, степени форсирования поршни выполняют цельными или составными, охлаждаемыми или неохлаждаемыми. На рис. 3.10, а приведена конструкция цельного неохлаждаемого поршня тронкового двигателя, который состоит из головки 2, являющейся его уплотнительной частью, и тронковой (направляющей) части 4. Головка образована днищем 1 и цилиндрической стенкой, на боковой поверхности которой сделаны канавки (ручьи) 3 для уплотнительных колец. Тронковая часть, называемая также юбкой, предназначена для направления движения поршня в цилиндре и передачи боковой силы на остов двигателя. С обеих сторон внутри юбки выполнены приливы – бобышки 6 с отверстиями для поршневого пальца. На наружной поверхности юбки в ее верхней части, а в некоторых конструкциях и в нижней, протачивают канавки 7 и 5 для маслосъемных колец. В двухтактных ДВС нижнее маслосъемное кольцо используется и в качестве уплотнительного, препятствующего утечке воздуха в картер. Для свободного перемещения поршня в цилиндре между стенкой цилиндра и юбкой предусмотрен рабочий зазор. Поскольку поршень нагревается по высоте неравномерно, то для того чтобы обеспечить требуемый зазор, диаметр головки делают несколько меньше диаметра юбки, а боковой поверхности придают ступенчатую или овально-бочкообразную форму с меньшей осью овала по оси пальца. Форма элементов поршня определяется тактностью двигателя, степенью форсирования и способом отвода теплоты. Рис. 3.10. Конструкции и способы охлаждения поршней тронковых двигателей Днище поршня воспринимает давление и теплоту горячих газов, ограничивает и формирует камеру сгорания. Форма днища зависит от способа смесеобразования, расположения камеры сгорания и типа продувки. В четырехтактных двигателях с непосредственным смесобраэованием применяют вогнутые или фигурные днища. Фигурным днищам придают форму топливных струй или более сложную форму, когда камеру сгорания размещают в поршне. Плоские днища используют в двигателях с разделенным смесеобразованием. В двухтактных двигателях применяют плоские, выпуклые и вогнутые днища, способствующие лучшей организации процессов продувки и смесеобразования. Размеры головки поршня по высоте определяются количеством поршневых колец и расположением верхнего кольца относительно кромки поршня. Число колец бывает от 3 до 5 н зависит от быстроходности двигателя, давления газов и способа охлаждения поршня. Верхнее кольцо располагают ниже кромки поршня на расстоянии примерно 0,2D чтобы при положении поршня в ВМТ оно находилось в охлаждаемой части втулки. Направляющую часть поршня проектируют легкой, но прочной и жесткой, чтобы не нарушалась ее геометрическая форма при действии нормальной силы. Для этого в чугунных поршнях на внутренней поверхности выполняют кольцевые поперечные ребра жесткости, а в алюминиевых кованых плавно утолщают стенку. Длину направляющей находят из расчета на допустимые удельные давления от действия максимальной нормальной силы. Для повышения жесткости бобышек их подкрепляют в литых поршнях ребрами, а в штампованных – массивным переходом к днищу (рис. 3.10, а, б). В некоторых конструкциях поршней с целью увеличения несущей способности бобышек торцы их выполняют наклонными (рис. 3.10, в) или ступенчатыми (рис, 3.10, г, д). Теплоту, воспринимаемую днищем у неохлаждасмых поршней, отводят через поршневые кольца и тронк во втулку и далее в охлаждающую воду. Чтобы теплота распределялась на всех кольцах равномерно, увеличивают сечения перехода от днища к стенкам головки (рис. 3.10, а, б). Круговая канавка 3 над верхним кольцом (рис. 3.10, б) или аустенитные вставки 1 с низкой теплопроводностью (рис, 3,10, в) служат тепловыми дамбами, защищая верхнее кольцо от перегрева, В форсированных по наддуву двигателях для увеличения теплоотдачи от днища применяют принудительное охлаждение поршня: в троковых двигателях – маслом, в крейцкопфных – маслом или водой. Охлаждение может быть струйным, циркуляционным или взбалтыванием. При струйном охлаждении (ВОД с ре до 1,2 МПа и D < 200 мм) внутренняя поверхность головки поршня омывается маслом, подаваемым из форсунки 1, размещенной на шатуне 2 (рис. 3.10, б). Циркуляционное охлаждение предусматривает прокачку масла с повышенной скоростью через кольцевую полость (ВОД с ре = 1,4...1,6 МПа D < 200 мм) или через спиральные каналы (СОД с ре = 1,5…1,7 МПа и D < 500 мм). В кольцевую полость 2 (рис. 3.10, в) масло вводится по каналу 3 струей из форсунки, закрепленной в картере, а в спиральные каналы (змеевик) поступает через систему отверстий в шатуне, пальце, бобышке поршня. При охлаждении взбалтыванием (СОД с ре = 2,0 МПа и D = 200...600 мм) усиленный теплоотвод обеспечивается высокой скоростью перемещения масла под действием сил инерции. Для этого масло должно лишь частично заполнять полость охлаждения в поршне с развитым объемом. Масло в поршень подается через шатун и уплотнительный стакан 3, а сливается по каналу 4 в картер (рис. 3,10, г) или подается через сверления 4 и 5 в поршневом пальце и бобышках поршня и сливается через горловину 6 в центре поршня (рис. 3,10, д). В форсированных ДБС, работающих на тяжелом топливе, применяют охлаждаемые составные поршни (рис. 3.10, г, д, е) с отъемной головкой 1 из жаропрочной стали и тронком 2 из чугуна или алюминиевого сплава, соединяемых длинными и податливыми шпильками. Тонкостенное днище способствует эффективному охлаждению головки поршня, а малые сечения перехода от днища к стенкам (рис. 3.10, г, д) или глухие пальцевые каналы 6 (рис. 3.10, е), выполненные равномерно по окружности головки, образуют тепловой барьер над кольцами. Прочность днища обеспечивается кольцевым опорным поясом. Для выравнивания температурного поля и уменьшения износа применяют поршни, проворачивающиеся во время работы (рис. 3.10, е). При качании шатуна храповые защелки 3, расположенные в его верхней головке сферической формы, поворачивают зубчатый венец 4. Последний сжимает кольцевую пружину 5, соединенную своими концами с венцом и юбкой поршня. Пружина поворачивает поршень на небольшой угол при каждом качательном движении в момент, когда нагрузка на поршень невелика. Материал для изготовления поршня или его элементов должен иметь высокие механические свойства, хорошую теплопроводность, небольшой коэффициент линейного расширения, быть жаропрочным, хорошо обрабатываться и иметь сравнительно низкую стоимость. Этим требованиям в определенных условиях соответствуют чугуны марок СЧ25, СЧ35, ВЧ45-5, легированные стали, литейные АЛ1, АЛ25 или деформируемые АК2, АК4 алюминиевые сплавы. Поршневой палец в тронковых двигателях обеспечивает шарнирное соединение поршня с шатуном. На палец действует механическая нагрузка от газовых и инерционных сил, которые в четырехтактных двигателях изменяются по величине и направлению, а в двухтактных – только по величине. Палец нагревается, воспринимая теплоту от поршня и теплоту трения. Конструкция пальца зависит от условий работы, способов крепления и подвода охлаждающего масла к поршню. В общем случае палец представляет собой цилиндрический стержень, выполненный для уменьшения массы полым (рис. 3.11, а). Поверхность его тщательно шлифуется для повышения усталостной прочности и уменьшения потерь на трение. Рис. 3.11. Поршневые пальцы: а, б, в – конструктивные формы; г, д – способы фиксации от осевого перемещения. В некоторых конструкциях пальцев выполняют радиальные 1 сверления (рис. 3.11, б) или систему из радиальных 1 и продольных 2 сверлений (рис. 3.11, б) для подачи масла на смазывание бобышек или в поршень для его охлаждения. Внутреннюю полость пальца герметизируют с помощью заглушек или трубок 2 (рис. 3.11, б). Передача масла из верхней головки шатуна через палец к поршню осуществляется по сверлениям, выполненным в средней части пальца и в концевых частях (рис. 3.12.). Центральное отверстие иногда глушат при помощи специальных заглушек. а б Рис. 3.12. Схема подачи масла через головку шатуна к бобышкам: а – без заглушки; б – с заглушкой Поршневые кольца по назначению делятся на компрессионные (уплотнительные) и маслосъемные. На кольца действуют давление и температура газов больших значений, а также силы инерции и трения. Кольцо представляет собой разрезной упругий элемент прямоугольного или другого сечения. В свободном состоянии диаметр кольца больше диаметра рабочего цилиндра, а разрез его (замок) имеет величину s. Компрессионные кольца уплотняют рабочий зазор, отводят теплоту от поршня. Установленное в цилиндре кольцо находится в сжатом состоянии и под действием сил упругости прижимается к стенке втулки с начальным давлением 0,10...0,35 МПа. Конструктивные особенности колец:
– прямоугольное . Такой формы кольца ставятся первыми на головке. Учитывая нагрузку на кольцо (тепловую и механическую) прямоугольное кольцо быстро прирабатывается и хорошо уплотняет цилиндр. – прямоугольное со скосом цилиндрической поверхности под углом 1…3о . Такую форму имеют кольца установленные за первым кольцом. Быстрее прирабатывается чем верхнее. Это кольцо имеет меньшую нагрузку и меньше изнашивается. – со скосом и цилиндрическим пояском на боковой поверхности такие кольца способствуют увеличению компрессии по мере износа кольца. – трапецеидальное с углом 15…20о применяются в ВОД и СОД. Канавка в поршне для таких колец имеет также трапецеидальную форму. Такие кольца менее склонны к пригоранию, поэтому их применяют в качестве верхних колец в форсированных ВОД. – прямоугольные не симметричные (скручивающиеся) . Рабочая поверхность кольца принимает форму конуса, что улучшает его приработку, уплотняющее действие, уменьшает склонность к заеданию. Такие кольца применяются в СОД и МОД. – прямоугольное боковая поверхность которого покрывается оловом для более быстрой приработки или завальцовывается поясок из свинцовистой бронзы .
1 – прямой разъем в ВОД; 2 – косой в ВОД и СОД; 3 – фигурный в МОД Рис. 3.13. Форма замка колец Маслосъемные кольца регулируют количество масла, поступающего к тронку поршня и уплотнительным кольцам, удаляя излишки его с зеркала цилиндра. На поршне устанавливают 1...3 маслосъемных кольца, располагая их на головке ниже уплотнительных колец и в нижней части тройка. Количество и расположение маслосъемных колец определяется величиной рабочего зазора в цилиндре, длиной тронка, частотой вращения коленчатого вала, отношением S/D. Маслосъемные кольца (рис. 3.14.) бывают скребкового а и коробчатого б типов. В скребковых кольцах наружная поверхность выполнена со скосом под углом 20...30°, образующим остроугольную соскабливающую кромку. При движении кольца вниз его кромка соскабливает большую часть масла, находящегося на зеркале цилиндра. а б Рис. 3.14. Маслосъемные кольца: а – скребкового типа; б – коробчатого типа Коробчатые кольца соприкасаются со втулкой 1 двумя острыми кромками 5, что повышает их эффективность. Для увеличения радиального давления на стенку цилиндра эти кольца снабжают расширителями (эспандерами) 7 из витых пружин. Масло, соскабливаемое кольцами, удаляют в картер через отверстия 4, 6, выполненные в поршне. Материалом для кольца является серый чугун с пластинчатым графитом или высокопрочный чугун с шаровидным графитом, легированные хромом, никелем, молибденом, медью, ванадием. Для первых колец ВОД применяют стали 45, 50Г. Для повышении износостойкости колец и стенок канавки поршня рабочую и торцевые поверхности колец хромируют. Рабочие поверхности нехромнрованных колец для ускорения приработки покрывают тонким слоем олова, меди или снабжают кольцевыми вставками из антифрикционной бронзы. Шатунная группа. В состав входят шатун, вкладыши его верхней и нижней головок, крышка шатуна, шатунные болты и гайки. Шатун соединяет поршень или поперечину крейцкопфа с коленчатым валом, обеспечивает перемещение поршня при совершении вспомогательных ходов. Шатун подвергается действию силы от давления газов, сил инерции поступательно движущихся масс и сил инерции, возникающих при качании шатуна. Основными элементами шатуна являются верхняя (поршневая) головка 7, нижняя (кривошипная) головка 4 и соединяющий их стержень 5 (рис. 3.15, а). Стержень шатуна связывает верхнюю и нижнюю головки между собой. Он может иметь двутавровое 1 и Н-образное 2 сечения (рис. 3.15, в). Рис. 3.15. Шатуны тронковых двигателей: а, б – с цельным и разъемным стержнем; в – сечение стержня. Применение той или иной формы сечения во многом определяется типом двигателя и технологией изготовления. Штампованные шатуны с двутавровым сечением широко применяют в ВОД и СОД. Для получения наибольшей жесткости шатуна при наименьшей его массе сечение располагают вертикальной стенкой в плоскости качания. Двутавровое Н-образное сечение с расположением полок в плоскости качания иногда используют для главных шатунов многорядных двигателей, чтобы обеспечить непрерывность силовых поясов стержня и проушин и повысить общую жесткость нижней головки. Круглое сечение шатунов СОД и МОД получают ковкой с последующей обработкой поверхности. В большинстве конструкций в стержне выполняют продольное сквозное отверстие, по которому масло поступает на смазывание головок шатуна. Верхняя головка шатуна обеспечивает шарнирное соединение шатуна с поршнем. В тронковых двигателях она откована заодно целое со стержнем и не имеет разъема. В ВОД головка имеет круглую форму с постоянным сечением по длине (рис. 3.16 а, б), в СОД – овальную форму с утолщением к центру (рис. 3.16 в, г). В отверстие верхней головки (рис. 3.15 а) запрессовывают втулку подшипника 6, выполненную из стали с антифрикционным слоем или антифрикционной бронзы. Головной подшипник ВОД малых размеров часто смазывается масляным туманом, попадающим в него через сверления 1 в верхней части головки (рис. 3.15 а). В форсированных ВОД и СОД масло к подшипнику подается под давлением через канал в стержне шатуна. Рис. 316. Конструкции верхней головки шатуна Нижняя головка обеспечивает шарнирное соединение шатуна с кривошипной шейкой коленчатого вала и образует корпус шатунного подшипника. По условиям сборки ее всегда делают с прямым или косым разрезом. Отъемная крышка 3 нижней головки 4 крепится с помощью шатунных болтов 1 (рис. 3.15 а), шпилек (рис. 3.17 б, в) или конических штифтов (рис. 3.18 б). В малоразмерных ВОД и СОД для снижения массы, размеров и увеличения жесткости головки ее отковывают вместе со стержнем. В СОД и МОД часто применяют шатуны с отъемной головкой, состоящей из двух частей – верхней и нижней (рис. 3.17 а). Обе части присоединяются к подошве стержня шатуна шатунными болтами. Во время ремонта такую головку можно удалить через люки картера без разборки цилиндра. Ширина кривошипной головки должна быть меньше диаметра цилиндра для возможности выемки поршня с шатуном через цилиндр. Это условие выполняется, если диаметр мотылевой шейки не превышает 0,67D при двух шатунных болтах и 0,7D при четырех. Рис. 3.17. Конструкции нижней головки шатуна. В современных двигателях валы имеют увеличенный диаметр шатунных шеек, равный (0,75...0,92)D. Поэтому для прохода шатуна через цилиндр нижнюю головку шатуна при диаметре шейки до 0,8D выполняют с косым разъемом под углом 30...60° к оси стержня (рис. 3.17 б). После удаления крышки ширина такой головки становится меньше диаметра цилиндра. При диаметре шейки (0,8...0,92)D применяют конструкцию отъемной головки, верхняя половина которой крепится шпильками к подошве стержня, уменьшенной до размера цилиндра. В двигателях с большим диаметром вала начинают применять шатуны с разъемным стержнем, где стык и соединительные фланцы расположены в районе верхней головки (рис. 3.15 б). В судовых V-образных двигателях применяют конструкции шатунов, которые различают способом соединения их с коленчатым валом. Это смещенные шатуны (рис. 3.18 а), когда нижние головки двух однородных шатунов расположены рядом на общей шейке вала, и сочлененные шатуны (рис. 3.18, б), которые образуют узел, состоящий из главного шатуна 1, соединенного с шейкой вала, и прицепного шатуна 2, связанного с главным шатуном пальцем 3 через проушины 4. Рис.3.18. Шатуны V-образных двигателей: а – смещение; б – сочлененные (с прицепным шатуном). Подшипники кривошипной головки 4 изготовляют в виде стальных тонкостенных вкладышей 2, рабочую поверхность которых заливают слоем баббита или свинцовистой бронзы. Для лучшей прирабатываемости на слой бронзы наносят тонкий слой свинцово-оловянистого сплава (трехслойный подшипник). Чтобы не допустить смещения, вкладыши фиксируют штифтами или усиками. Масло в кривошипный подшипник шатуна поступает по сверлениям в коленчатом вале из системы смазывания двигателя. Выемки (холодильники) на стыках вкладышей способствуют попаданию масла на их опорную поверхность. Крышка нижней головки шатуна четырехтактного двигателя нагружена силами инерции, а двухтактного рассчитывается на условную силу заедания поршня. Для сохранения формы подшипников крышку делают жесткой, выбирая соответствующие сечения. Центровка крышки обеспечивается штифтами и направляющими поясками шатунных болтов. При косом разъеме кривошипной головки крышка фиксируется специальными замками – выступами, шлицами или штифтами для разгрузки шатунных болтов от срезающих усилий. Для изготовления шатунов применяют углеродистые стали 40, 45, 50 или легированные стали 45Х, 40ХН, 12Х2Н4ВА, ЗОХМА и др. Шатунные болты (рис. 3.19 а) или шпильки (рис. 3.19 б) обеспечивают плотное соединение разъемной кривошипной головки шатуна. Они нагружены силой предварительной затяжки и переменными силами инерции поршневой и шатунной групп. Для повышения усталостной прочности стержень болта делают податливым, выполняя его равным 0,85...0,95 внутреннего диаметра резьбы. Для уменьшения концентрации напряжений увеличивают радиусы переходов от стержня болта к центрирующим пояскам, головке болта и резьбе. Резьбу выполняют накатыванием, полируют поверхность болта. В зависимости от числа разъемов в кривошипной головке болты имеют один или два калиброванных направляющих пояска. Головку болта делают симметричной, чтобы исключить внецентренное растяжение, стопорят от проворачивания при затяжке гайки. В ВОД корончатые гайки затягивают динамометрическими ключами, а в СОД и МОД специальные гайки — с помощью гидродомкрата. Рис. 3.19. Шатунные болты и шпильки Гайки фиксируют шплинтами, контргайками и стопорными шайбами. В некоторых V-образных ВОД для повышения жесткости и снижения массы кривошипной головки главного шатуна 1 ее крышка 6 крепится двумя коническими штифтами 5, работающими на срез (рис. 3.18, б). Шатунные болты для МОД изготовляют из углеродистых сталей марок 35, 40, 45, для СОД и ВОД – из легированных сталей марок 40Х, 20ХН3А, 38ХН3МА и др. Группа коленчатого вала. В группу коленчатого вала входят коленчатый вал, противовесы, распределительная шестерня или звездочка, шестерни привода навешенных вспомогательных механизмов, узел осевой фиксации, демпфер, маховик. Коленчатый вал воспринимает усилия от шатунов, преобразует их во вращающий момент и передает его потребителю, осуществляет перемещение поршней во вспомогательных ходах, передает движение к распределительному валу, приводит в действие вспомогательные механизмы. На вал действуют силы от давления газов и силы инерции поступательно движущихся и вращающихся масс, изгибающие и скручивающие моменты от этих сил. Они вызывают деформацию в элементах, концентрацию напряжений, трение и изнашивание его шеек и подшипников. Периодически изменяющиеся крутящие моменты вызывают крутильные колебания вала, которые увеличивают напряжение в его элементах и могут способствовать усталостному разрушению вала. |