Главная страница
Навигация по странице:

  • Комбинированные судовые двигатели

  • Двигатели внутреннего сгорания состоят из узлов и систем, которые имеют различное функциональное назначение. Остов

  • Кривошипно-шатунный механизм

  • Остов крейцкопфных двигателей

  • Фундаментная рама. Фундаментная рама является основанием для деталей остова, предназначена

  • Для увеличения поперечной жесткости рамы по возможности максимально сближают анкерные связи и располагают разъем рамовых подшипников ниже верхней ее плоскости.

  • Поддон выполняют с уклоном к середине или к кормовой части рамы, чтобы обеспечить в условиях плавания надежный слив масла в циркуляционную цистерну или прием из него масла циркуляционным насосом.

  • Конспект лекций СДВС 2014. Конспект лекций по курсу двс (сдвс) Николаев 2014 Содержание


    Скачать 4 Mb.
    НазваниеКонспект лекций по курсу двс (сдвс) Николаев 2014 Содержание
    АнкорКонспект лекций СДВС 2014.doc
    Дата29.09.2017
    Размер4 Mb.
    Формат файлаdoc
    Имя файлаКонспект лекций СДВС 2014.doc
    ТипКонспект лекций
    #9063
    страница2 из 7
    1   2   3   4   5   6   7
    Тема 3. Основные конструктивные схемы разных типов ДВС. Конструктивные схемы остова двигателя. Элементы остова двигателя. Назначение. Общее строение и схема взаимодействия элементов КШМ ДВС.
    Конструктивная схема судового дизеля прежде всего зависит от тактности. В четырехтактном двигателе наполнение цилиндра свежим зарядом и выпуск отработавших газов происходят через клапаны. Эти клапаны приводятся в движение механизмом газораспределения. На распределительном валу двигателя устанавливают комплекты кулачковых шайб (отдельно для впускных и для выпускных клапанов). При их вращении в определенные моменты в соответствии с фазами газораспределения поднимаются (опускаются) толкатели, которые с помощью коромысел открывают клапаны или дают возможность пружинам клапанов закрыть их. Распределительный вал приводится во вращение от коленчатого вала и имеет вдвое меньшую частоту вращения, чем коленчатый вал.

    В двухтактном дизеле наполнение рабочего цилиндра происходит только через окна, которые открывает и закрывает поршень. Если отработавшие газы выпускаются через клапан, то он открывается также механизмом газораспределения, причем частота вращения распределительного вала в двухтактном двигателе равна частоте вращения коленчатого вала.

    Конструктивные схемы любых ДВС различаются и по исполнению кривошипно-шатунного механизма (рис. 3.1).

    В тронковом двигателе шатун с помощью пальца соединен непосредственно с поршнем (рис. 3.1, а). В этом случае существенно уменьшается общая высота двигателя, однако продукты окисления, которые удаляются поршневыми кольцами с поверхности втулки цилиндра, попадают в нижнюю часть двигателя (картер), т. е. в конечном счете, в смазочное циркуляционное масло двигателя. Кроме того, в тронковых дизелях втулка цилиндра дополнительно нагружена нормальным усилием, которое увеличивает ее износ. Тронковыми строят все высоко- и среднеоборотные ДВС и редко малооборотные дизели.

    В крейцкопфном двигателе шатун соединен с крейцкопфным устройством, которое с помощью штока соединено с поршнем (рис. 3.1, б). Крейцкопфное устройство применяют в двухтактных МОД для разгрузки цилиндра от нормального давления. При этом шток поршня в данном случае позволяет изолировать картер двигателя от подпоршневой полости цилиндра. С этой целью устанавливают разделительную диафрагму с сальнико­вым уплотнением для штока.



    а б в г

    Рис. 3.1. Схемы кривошипно-шатунных механизмов двигателей

    1 – поршень; 2 – шатун; 3 – шток; 4 – крейцкопф; 5 – кривошип коленчатого вала

    Особенностью кривошипно-шатунного механизма двигателя с V-образным расположением цилиндров является то, что с одним коленом вала сочленяются два рабочих поршня (рис. 3.1, в). Данная схема широко применяется в средне- и высокооборотных ДВС.

    В схеме кривошипно-шатунного механизма с противополож­но движущимися поршнями (ПДП) и двумя коленчатыми ва­лами (рис. 3.1, г) суммарная мощность от обоих коленчатых ва­лов потребителю передается с помощью шестеренной передачи. Несмотря на то что двигатели с ПДП и имеют ряд положитель­ных качеств (двигатель лучше уравновешен, хорошая продувка цилиндра, меньшая удельная масса), из-за существенного ус­ложнения конструкции они не получили широкого распростра­нения.

    Конструктивная схема двигателя зависит и от принципа дей­ствияпростого или двойного. В двигателях двойного действия и нижней рабочей полости цилиндра имеется крышка с газоуплотнительным сальником для штока поршня, т. е. такие дви­гатели бывают только крейцкопфного типа. Мощность дизелей двойного действия почти в 2 раза больше мощности дизеля про­стого действия, однако выпуск дизелей двойного действия давно прекратили, так как форсировка дизеля не позволяет обеспечить его надежную и экономичную работу.

    Комбинированные судовые двигатели (дизели с наддувом) по виду связи между поршневым двигателем и наддувочным агрегатом можно разделить на три группы: с механической, га­зовой и комбинированной связями. Основные схемы судовых ди­зелей с наддувом представлены на рис. 3.2.



    Рис. 3.2 Схемы комбинированных судовых двигателей:

    ––––––– – воздух; ------------ – отработавшие газы
    При механической связи (рис. 3.2 а), компрессор 4 воздуха приводится в действие непосредственно от коленчатого вала двигателя 1 через механическую передачу – мультипликатор, повышающий частоту вращения вала компрессора. Такая схе­ма применяется в дизелях с низкой степенью наддува, а также в двухтактных дизелях без наддува. Основным недостатком рас­смотренной схемы является то обстоятельство, что на привод компрессора затрачивается значительная работа (мощность) двигателя, полученная в рабочем цилиндре. Это, в свою очередь, приводит не только к снижению мощности двигателя, но и к падению его экономичности.

    Газовая связь турбокомпрессора с поршневым двигателем показана на рис. 3.2, бд. В схеме двигателя с импульсным наддувом (рис. 3.2, б, в) отработавшие газы из рабочих цилиндров поступают непосредственно в турбину 5, которая называется импульсной, так как в ней срабатывает импульс давления га­зов, поступающих из цилиндра. В схеме с изобарным газотур­бинным наддувом (рис. 3.2, г) отработавшие газы из цилиндров выходят в выпускной коллектор 6, а затем практически при по­стоянном давлении идут в изобарную турбину 7. В схеме дви­гателя с двухступенчатым газотурбинным наддувом (рис. 3.2, д) газы сначала срабатывают в импульсной турбине 5, а затем в изобарной 7. Во всех схемах воздух после сжатия в компрессоре перед подачей его в наддувочный (продувочный) ресивер 2 охлаждается в специальном охладителе 3.

    В двухтактных судовых дизелях широкое распространение получила и комбинированная связь. При такой связи воздух сжимается как в турбокомпрессоре, так и в приводном компрес­соре. В малооборотных крейцкопфных дизелях в качестве при­водного компрессора нередко используют подпоршневые по­лости (рис. 3.2, е). В этом случае воздух после компрессора по­ступает в подпоршневые полости (ПП) 8, где он дополнительно сжимается, затем поступает в наддувочный ресивер. В за­ключительной стадии продувки давление воздуха в ПП падает и воздух от компрессора идет непосредственно в ре­сивер.

    При изобарном наддуве в некоторых схемах на режимах малых нагрузок турбокомпрессор не обеспечивает потребное двигателю количество воздуха. Тогда на этих режимах включа­ются электроприводные компрессоры 9, специально установлен­ные на двигателе (рис. 3.2, г).
    Двигатели внутреннего сгорания состоят из узлов и систем, которые имеют различное функциональное назначение.

    Остов поддерживает и направляет движущиеся детали, воспринимает все усилия при работе двигателя; представляет собой совокупность неподвижных деталей — фундаментной рамы (в двигателях с подвесным коленчатым валом отсутствует), картера, цилиндров, крышек цилиндров, а также анкерных связей, шпилек и болтов, стягивающих эти детали.

    Кривошипно-шатунный механизм воспринимает усилие от давления газов и преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Основные детали КШМ в крейцкопфных двигателях — поршень, шток поршня, крейцкопф, шатун, коленчатый вал; в тронковых двигателях — поршень, поршневой палец, шатун, коленчатый вал.
    Остов двигателя

    Основные неподвижные детали образуют остов двигателя, являющийся опорой для различных узлов и движущихся деталей. Он состоит из фундаментной рамы, картера, цилиндров и их крышек. Все эти элементы соединены связями в единую конструкцию.

    Конструктивное оформление деталей остова определяется назначением и типом двигателя, количеством и расположением цилиндров, схемами КШМ и механизма газораспределения. Силы от давления газов, инерции движущихся масс и предварительной затяжки связей при сборке, действующие на остов, вызывают деформацию его элементов. При достаточной механи­ческой прочности элементов для нормальной работы двигателя остов должен обладать необходимой продольной и поперечной жесткостью, при которой сохраняются линия укладки коленча­того вала, перпендикулярность осей цилиндров к оси коленча­того вала, геометрическая форма рабочих цилиндров.

    На рис. 3.3 показаны конструктивные схемы остовов судо­вых рядных двигателей, различающиеся между собой числом разъемов между его деталями и способами укладки коленчатого вала. Эти различия вызваны особенностями требований к габа­ритам, массе, технологии изготовления, удобству обслуживания и ремонта двигателя. Остовы V-образных двигателей и с ПДП (и подобные им) более сложные и выполняются по схожим между собой схемам.

    Остов крейцкопфных двигателей, имеющих обычно большую высоту (рис. 3.3, а), состоит из фундаментной рамы 1, картера 2, цилиндров 3 с установленными в них цилиндровыми втулка­ми 4 и крышек цилиндров 6, закрепленных шпильками 5. Из технологических соображений и удобства монтажа остов выпол­няют, как минимум, с тремя горизонтальными разъемами и с коленчатым валом, уложенным в подшипники фундаментной ра­мы. Жесткость его обеспечивается за счет увеличения сечений продольных и поперечных связей рамы, применения картеров коробчатой конструкции, соединения деталей длинными анкер­ными связями 7.


    Рис. 3.3. Конструктивные схемы остовов дизелей
    В тронковых двигателях для повышения жесткости остова, снижения его массы отдельные его элементы часто объединяют в одно целое, что технологически вполне приемлемо. Конструк­тивно это решается объединением цилиндров двигателя с кар­тером в общий блок-картер 1 (рис. 3.3, б), а также применением развитой по высоте фундаментной рамы 1, выполненной как одно целое с картером и отдельным блоком цилиндров 2 (рис. 3.3, в). Соединяют эти элементы сквозными анкерными связями 2 (рис. 3.3, б) или укороченными силовыми шпильками 3 (рис. 3.3, в), ввернутыми в нижнюю часть блока цилиндров.

    Остов с подвесным коленчатым валом широко распростра­нен в современных ВОД и СОД в связи с большой жесткостью и меньшей массой конструкции. В однорядных СОД большой мощности применяют блок-картер 1, к которому снизу массив­ными крышками подшипников 2 подвешивают коленчатый вал (рис. 3.3, г). Часто остовы рядных и V-образных двигателей с подвесным валом выполняют по схеме, где картер 1 и блок ци­линдров 2 отлиты раздельно и стянуты силовыми шпильками 3 (рис. 3.3, д). При этой схеме, несмотря на дополнительный разъ­ем, сохраняется жесткость, упрощается изготовление остова, снижается его масса, так как блок цилиндров разгружен от растягивающих усилий. В большинстве двигателей крышки крепят к блоку цилиндров короткими силовыми шпильками, устанавливаемыми в верхней его плите. Общая масса деталей остова во многом определяется схемой их нагружения. При растяжении остова газовыми сила­ми детали его получаются более тяжелыми. В конструкциях, где остов стянут анкерными связями, детали могут быть облегчены, так как чугун на сжатие работает лучше, чем на растяжение.

    Для проводки анкерных связей в поперечных балках дета­лей остова выполняют вертикальные каналы (колодцы). Анкер­ная связь 7 (рис. 3.3, а) представляет собой стержень с резьбой под гайки на обоих его концах. В МОД для удобства при монтаже анкерные связи выполняют из двух частей, соеди­ненных резьбовой муфтой. Для устранения поперечных вибраций длинных анкерных связей используют эластичные стопор­ные устройства. Затягивают анкерные связи гидравлическим домкратом с усилием, обеспечивающим плотное соединение де­талей остова при наибольшем давлении в цилиндре. Анкерные связи изготовляют из углеродистой стали.

    Все связи, затягиваемые гидравлическим способом, имеют специальную конструкцию: концы их оборудуют нарезным хвос­товиком для крепления гидродомкрата, а гайки к ним имеют цилиндрическую форму с отверстиями на боковой поверхности под вороток. Гидравлический домкрат используют в СОД и МОД также для затяжки силовых связей рамовых подшипников, подшипников нижней (кривошипной) и верхней головки шатуна, крышек цилиндров, штоков поршней, насадки кулачных шайб, выкатывания вкладышей рамовых подшипников и др.
    Фундаментная рама.

    Фундаментная рама является основанием для деталей остова, предназначена для укладки коленчатого вала и служит емкостью для сбора масла, вытекающего из узлов смазывания двигателя. Рама нагружена массой двигателя, силами давления газов, силами инерции поступательно движущихся и вращающихся масс.

    Рама (рис. 3.4, а, б) образована продольными и поперечными балками, которые должны иметь требуемую жесткость. Продольные балки 2 оснащены верхними обработанными полками 3 для установки на них картера и нижними опорными полками (лапами) 1 для крепления двигателя к судовому фундаменту.

    Поперечные балки 4 двутаврового или коробчатого сечения расположены между цилиндрами и по торцам рамы. В верхней части поперечных балок выполнены гнезда (постели) 5 для рамовых подшипников коленчатого вала, а в стенках балок – вертикальные каналы (колодцы) а для анкерных связей и отверстия b для перетекания масла вдоль рамы. Для увеличения поперечной жесткости рамы по возможности максимально сближают анкерные связи и располагают разъем рамовых подшипников ниже верхней ее плоскости.



    Рис. 3.4. Фундаментные рамы и рамовые подшипники:

    а – литая; б – сварно-литая; в, г, д, е – рамовые подшипники соответственно с креплением крышки шпильками, домкратами, подвесной и установочный

    В зависимости от типа и мощности двигателя фундаментные рамы выполняют литыми (рис. 3.4, а), сварными или сварно-литыми. Из технологических соображений фундаментные рамы СОД чаще всего выполняют литыми из чугуна СЧ20, СЧ3О, реже из стали 15Л, 30Л. Фундаментные рамы МОД и некоторых СОД для уменьшения массы и стоимости делают сварно-литыми (рис. 3.4, б). В таких конструкциях поперечные балки или часть их, включающая постель подшипника и анкерные каналы, выполняются литыми, а остальные части поперечных балок и продольные балки – сварными из проката стали 20, 25.

    Полость рамы и закрывающий ее снизу поддон образуют маслосборник. Для увеличения жесткости рамы поддон часто делают заодно с ней (рис. 3.3, б, в). В СОД с подвесным коленчатым валом (рис. 3.3, г, д) и МОД он съемный сварной конструкции. Поддон выполняют с уклоном к середине или к кормовой части рамы, чтобы обеспечить в условиях плавания надежный слив масла в циркуляционную цистерну или прием из него масла циркуляционным насосом. В маслосборнике между поперечными перегородками рамы часто устанавливают металлическую сетку, уменьшающую пенообразование масла и предотвращающую попадание в него посторонних предметов.

    Если двигатель оборудован навешенными насосами (водяными, масляными, топливоподкачивающими), то они монтируются на переднем торце рамы. На кормовом торце, где выходит коленчатый вал, во избежание утечек масла выполняют уплотнение.

    Рамовые подшипники являются опорой для шеек коленчатого вала и представляют собой разъемный подшипник скольжения, состоящий из двух цилиндрических полувкладышей, внутренняя поверхность которых залита антифрикционным сплавом. Корпусом для вкладышей являются жесткий прилив (постель) в поперечных перегородках рамы или картера и крышка подшипника, прижимающая вкладыши к постели. Во время работы двигателя элементы подшипника нагружены силами от давления газов и силами инерции КШМ, вызывающими механические напряжения в деталях подшипника и износ трущихся поверхностей. Вкладыши выполняют сменными, не требующими пригонки при установке. Они бывают толстостенными, имеющими толщину стенки более 1/20 его наружного диаметра (до 5 мм), и тонкостенными с толщиной стенки менее 1/30 диаметра (менее 5 мм).

    В МОД применяют толстостенные, выполненные из сталей 25 и 30, вкладыши 4 (рис. 3.4, в, г), рабочую поверхность которых заливают баббитом Б89, Б83, БН. Толщина слоя заливки составляет 1,8...2,5 мм. По мере износа слоя баббита масляный зазор в подшипнике регулируют удалением из стыка между вкладышами калиброванных прокладок 3. В СОД и ВОД, имеющих повышенные нагрузки на подшипник, применяют тонкостенные вкладыши 1 (рис. 3.4, д) из малоуглеродистой стали 10, 15 или 20 с заливкой толщиной 0,3...0,8 мм из свинцовистой бронзы БрСЗ0. Для улучшения противозадирных свойств, прирабатываемости, свинцовистую бронзу покрывают тонким слоем свинцово-оловянистого сплава. При износе заливки тонкостенные вкладыши заменяют.

    Крышка подшипника 2 крепится болтами или шпильками 1 (рис. 3.4, в), усилие затяжки которых должно обеспечить плотность стыка при действии на крышку в четырехтактных двигателях наибольшей силы инерции КШМ, а в двухтактных двигателях – силы заедания Р = (1,0…1,5) Fп MH, где 1,0...1,5 МПа – условное усилие, отнесенное к 1 м2 площади поршня. Иногда в СОД и МОД для уменьшения расстояния между анкерными связями крышку 2 прижимают одним-двумя домкратами 1, упирающимися в подкрепленную ребром поперечную балку картера или блок-картера (рис. 3.4, г). Крышки имеют двутавровое или коробчатое сечение и отливаются из чугуна СЧ20, СЧ25 или стали 30.

    1   2   3   4   5   6   7


    написать администратору сайта