Главная страница
Навигация по странице:

  • Тип сегмента База левого сегмента, bt База промежуточного сегмента, bt

  • Тип сегмента Передающий сегмент, bt Промежуточный сегмент, bt

  • 11.ТЕХНОЛОГИЯ 100VG-AnyLAN 11.1. Общая характеристика технологии 100VG-AnyLAN

  • 100VG-AnyLAN

  • Demand Priority

  • 11.2. Структура сети 100VG-AnyLAN

  • 11.3. Стек протоколов технологии 100VG-AnyLAN

  • 11.4. Функции уровня MAC

  • Консп. конспект_ лекций_СПД. Конспект лекций по курсу "Системы передачи данных" Для студентов, обучающихся по направлению


    Скачать 4.08 Mb.
    НазваниеКонспект лекций по курсу "Системы передачи данных" Для студентов, обучающихся по направлению
    АнкорКонсп
    Дата06.03.2023
    Размер4.08 Mb.
    Формат файлаdoc
    Имя файлаконспект_ лекций_СПД.doc
    ТипКонспект лекций
    #970719
    страница6 из 17
    1   2   3   4   5   6   7   8   9   ...   17

    10.5. Методика расчета конфигурации сети Ethernet

    Соблюдение многочисленных ограничений, установленных для различных стандартов физического уровня сетей Ethernet, гарантирует корректную работу сети (естественно, при исправном состоянии всех элементов физического уровня).

    Чтобы сеть Ethernet, состоящая из сегментов различной физической природы, работала корректно, необходимо выполнение четырех основных условий:

    • количество станций в сети не более 1024;

    • максимальная длина каждого физического сегмента не более величины, определенной в соответствующем стандарте физического уровня;

    • время двойного оборота сигнала (Path Delay Value, PDV) между двумя самыми удаленными друг от друга станциями сети не более 575 битовых интервала;

    • сокращение межкадрового интервала IPG (Path Variability Value, PVV) при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала.

    Соблюдение этих требований обеспечивает корректность работы сети даже в случаях, когда нарушаются простые правила конфигурирования, определяющие максимальное количество повторителей и общую длину сети в 2500 м.

    Расчет PDV

    Для упрощения расчетов обычно используются справочные данные IEEE, содержащие значения задержек распространения сигналов в повторителях, приемопередатчиках и различных физических средах. В табл. 10.1 приведены данные, необходимые для расчета значения PDV для всех физических стандартов сетей Ethernet. Битовый интервал обозначен как bt.

    Комитет 802.3 старался максимально упростить выполнение расчетов, поэтому данные, приведенные в таблице, включают сразу несколько этапов прохождения сигнала. Например, задержки, вносимые повторителем, состоят из задержки входного трансивера, задержки блока повторения и задержки выходного трансивера. Тем не менее, в таблице все эти задержки представлены одной величиной, названной базой сегмента. Чтобы не нужно было два раза складывать задержки, вносимые кабелем, в таблице даются удвоенные величины задержек для каждого типа кабеля.

    Таблица 10.1. Данные для расчета значения PDV

    Тип сегмента

    База левого сегмента, bt

    База промежуточного сегмента, bt

    База правого сегмента, bt

    Задержка среды на 1 м, bt

    Максимальная длина

    сегмента, м

    10Base-5

    11,8

    46,5

    169,5

    0,0866

    500

    10Base-2

    11,8

    46,5

    169,5

    0,1026

    185

    10Base-T

    15,3

    42,0

    165,0

    0,113

    100

    10Base-FB



    24,0



    0,1

    2000

    10Base-FL

    12,3

    33,5

    156,5

    0,1

    2000

    FOIRL

    7,8

    29,0

    152,0

    0,1

    1000

    AUI (> 2 м)

    0

    0

    0

    0,1026

    2+48


    В таблице используются также такие понятия, как левый сегмент, правый сегмент и промежуточный сегмент. Поясним эти термины на примере сети, приведенной на рис. 10.8. Левым сегментом называется сегмент, в котором начинается путь сигнала от выхода передатчика конечного узла. На примере это сегмент 1. Затем сигнал проходит через промежуточные сегменты 2-5и доходит до приемника наиболее удаленного узла наиболее удаленного сегмента 6, который называется правым. Именно здесь в худшем случае происходит столкновение кадров и возникает коллизия, что и подразумевается в таблице.

    С каждым сегментом связана постоянная задержка, названная базой, которая зависит только от типа сегмента и от положения сегмента на пути сигнала (левый, промежуточный или правый). База правого сегмента, в котором возникает коллизия, намного превышает базу левого и промежуточных сегментов.



    Рисунок 10.8. Пример сети Ethernet, состоящей из сегментов различных физических стандартов

    Кроме этого, с каждым сегментом связана задержка распространения сигнала вдоль кабеля сегмента, которая зависит от длины сегмента и вычисляется путем умножения времени распространения сигнала по одному метру кабеля (в битовых интервалах) на длину кабеля в метрах.

    Расчет заключается в вычислении задержек, вносимых каждым отрезком кабеля (приведенная в таблице задержка сигнала на 1 м кабеля умножается на длину сегмента), а затем суммировании этих задержек с базами левого, промежуточных и правого сегментов. Общее значение PDV не должно превышать 575.

    Так как левый и правый сегменты имеют различные величины базовой задержки, то в случае различных типов сегментов на удаленных краях сети необходимо выполнить расчеты дважды: один раз принять в качестве левого сегмента сегмент одного типа, а во второй — сегмент другого типа. Результатом можно считать максимальное значение PDV. В нашем примере крайние сегменты сети принадлежат к одному типу — стандарту 10Base-T, поэтому двойной расчет не требуется, но если бы они были, сегментами разного типа, то в первом случае нужно было бы принять в качестве левого сегмент между станцией и концентратором 1, аво втором считать левым сегмент между станцией и концентратором 5.

    Приведенная на рисунке сеть в соответствии с правилом 4-х хабов не является корректной — в сети между узлами сегментов 1и 6 имеется 5хабов, хотя не все сегменты являются сегментами 10Base-FB. Кроме того, общая длина сети равна 2800 м, что нарушает правило 2500 м. Рассчитаем значение PDV для нашего примера.

    Левый сегмент 1:15,3 (база) + 100 х 0,113 - 26,6.

    Промежуточный сегмент 2: 33,5 + 1000 х 0,1 = 133,5.

    Промежуточный сегмент 3: 24 + 500 х 0,1 = 74,0.

    Промежуточный сегмент 4: 24 + 500 х 0,1 = 74,0.

    Промежуточный сегмент 5: 24 + 600 х 0,1 = 84,0.

    Правый сегмент 6: 165 + 100 х 0,113 = 176,3.

    Сумма всех составляющих дает значение PDV, равное 568,4.

    Так как значение PDV меньше максимально допустимой величины 575, то эта сеть проходит по критерию времени двойного оборота сигнала несмотря на то, что ее общая длина составляет больше 2500 м, а количество повторителей — больше 4-х.


    Расчет PVV

    Чтобы признать конфигурацию сети корректной, нужно рассчитать также уменьшение межкадрового интервала повторителями, то есть величину PVV.

    Для расчета PVV также можно воспользоваться значениями максимальных величин уменьшения межкадрового интервала при прохождении повторителей различных физических сред, рекомендованными IEEE и приведенными в табл. 10.2.

    Таблица 10.2. Сокращение межкадрового интервала повторителями

    Тип сегмента

    Передающий сегмент, bt

    Промежуточный сегмент, bt

    10Base-5 или 10Base-2

    16

    11

    10Base-FB



    2

    10Base-FL

    10,5

    8

    10Base-T

    10,5

    8

    В соответствии с этими данными рассчитаем значение PVV для нашего примера.

    Левый сегмент 1: 10Base-T: сокращение в 10,5 bt.

    Промежуточный сегмент 2: 10Base-FL: 8.

    Промежуточный сегмент 3: 10Base-FB: 2.

    Промежуточный сегмент 4: 10Base-FB: 2.

    Промежуточный сегмент 5: 10Base-FB: 2.

    Сумма этих величин дает значение PVV, равное 24,5, что меньше предельного значения в 49 битовых интервала.

    В результате приведенная в примере сеть соответствует стандартам Ethernet по всем параметрам, связанным и с длинами сегментов, и с количеством повторителей.

    11.ТЕХНОЛОГИЯ 100VG-AnyLAN
    11.1. Общая характеристика технологии 100VG-AnyLAN

    В качестве альтернативы технологии Fast Ethernet, фирмы AT&T и HP выдвинули проект новой технологии со скоростью передачи данных 100 Мбит/с - 100Base-VG. В этом проекте было предложено усовершенствовать метод доступа с учетом потребности мультимедийных приложений, при этом сохранить совместимость формата пакета с форматом пакета сетей 802.3. В сентябре 1993 года по инициативе фирм IBM и HP был образован комитет IEEE 802.12, который занялся стандартизацией новой технологии. Проект был расширен за счет поддержки в одной сети кадров не только формата Ethernet, но и формата Token Ring. В результате новая технология получила название 100VG-AnyLAN, то есть технология для любых сетей (Any LAN - любые сети), имея в виду, что в локальных сетях технологии Ethernet и Token Ring используются в подавляющем количестве узлов.

    Летом 1995 года технология 100VG-AnyLAN получила статус стандарта IEEE 802.12.

    В технологии 100VG-AnyLAN определены новый метод доступа Demand Priority и новая схема квартетного кодирования Quartet Coding, использующая избыточный код 5В/6В.

    Метод доступаDemand Priority основан на передаче концентратору функций арбитра, решающего проблему доступа к разделяемой среде. Метод Demand Priority повышает коэффициент использования пропускной способности сети за счет введения простого, детерминированного метода разделения общей среды, использующего два уровня приоритетов: низкий - для обычных приложений и высокий - для мультимедийных.
    11.2. Структура сети 100VG-AnyLAN

    Сеть 100VG-AnyLAN всегда включает центральный концентратор, называемый концентратором уровня 1 или корневым концентратором (рис.11.1).



    Рисунок 11.1 . Структура сети 100VG-AnyLAN
    Корневой концентратор имеет связи с каждым узлом сети, образуя топологию типа звезда. Этот концентратор представляет собой интеллектуальный центральный контроллер, который управляет доступом к сети, постоянно выполняя цикл "кругового" сканирования своих портов и проверяя наличие запросов на передачу кадров от присоединенных к ним узлов. Концентратор принимает кадр от узла, выдавшего запрос, и передает его только через тот порт, к которому присоединен узел c адресом, совпадающим с адресом назначения, указанным в кадре.

    Каждый концентратор может быть сконфигурирован на поддержку либо кадров 802.3 Ethernet, либо кадров 802.5 Token Ring. Все концентраторы, расположенные в одном и том же логическом сегменте (не разделенном мостами, коммутаторами или маршрутизаторами), должны быть сконфигурированы на поддержку кадров одного типа. Для соединения сетей 100VG-AnyLAN, использующих разные форматы кадров 802.3, нужен мост, коммутатор или маршрутизатор.

    Каждый концентратор имеет один "восходящий" (up-link) порт и N "нисходящих" портов (down-link), как это показано на рисунке 11.2.

    Восходящий порт работает как порт узла, но он зарезервирован для присоединения в качестве узла к концентратору более высокого уровня. Нисходящие порты служат для присоединения узлов, в том числе и концентраторов нижнего уровня. Каждый порт концентратора может быть сконфигурирован для работы в нормальном режиме или в режиме монитора. Порт, сконфигурированный для работы в нормальном режиме, передает только те кадры, которые предназначены узлу, подключенному к данному порту. Порт, сконфигурированный для работы в режиме монитора, передает все кадры, обрабатываемые концентратором.

    Узел представляет собой компьютер или коммуникационное устройство технологии 100VG-AnyLAN - мост, коммутатор, маршрутизатор или концентратор. Концентраторы, подключаемые как узлы, называются концентраторами 2-го и 3-го уровней. Всего разрешается образовывать до трех уровней иерархии концентраторов.

    Связь, соединяющая концентратор и узел, может быть образована либо 4 парами неэкранированной витой пары категорий 3, 4 или 5 (4-UTP Cat 3, 4, 5), либо 2 парами неэкранированной витой пары категории 5 (2-UTP Cat 5), либо 2 парами экранированной витой пары типа 1 (2-STP Type 1), либо 2 парами многомодового оптоволоконного кабеля.

    Варианты кабельной системы могут использоваться любые, но ниже будет рассмотрен вариант 4-UTP, который был разработан первым и получил наибольшее распространение.


    Рисунок 11.2. Круговой опрос портов концентраторами сети 100VG-AnyLAN
    11.3. Стек протоколов технологии 100VG-AnyLAN

    Структура стека протоколов технологии 100VG-AnyLAN согласуется с архитектурными моделями OSI/ISO и IEEE, в которых канальный уровень разделен на подуровни. Как видно из рисунка 11.3, стек протоколов технологии 100VG-AnyLAN состоит из подуровня доступа к среде (Media Access Control, MAC), подуровня, независящего от физической среды (Physical Media Independent, PMI) и подуровня, зависящего от физической среды (Physical Media Dependent, PMD).



    Рисунок 11.3. Структура стека протоколов технологии 100VG-AnyLAN
    11.4. Функции уровня MAC

    Функции уровня МАС включают реализацию протокола доступа Demand Priority, подготовки линии связи и формирования кадра соответствующего формата.

    Метод Demand Priority (приоритетный доступ по требованию) основан на том, что узел, которому нужно передать кадр по сети, передает запрос (требование) на выполнение этой операции концентратору. Каждый запрос может иметь либо низкий, либо высокий приоритеты. Высокий приоритет отводиться для трафика чувствительных к задержкам мультимедийных приложений.

    Высокоприоритетные запросы всегда обслуживаются раньше низкоприоритетных. Требуемый уровень приоритета кадра устанавливается протоколами верхних уровней, не входящими в технологию 100VG-AnyLAN и передается для отработки уровню МАС.

    Как показано на рисунке 11.2, концентратор уровня 1 постоянно сканирует запросы узлов, используя алгоритм кругового опроса (round-robin). Это сканирование позволяет концентратору определить, какие узлы требуют передачи кадров через сеть и каковы их приоритеты.

    В течение одного цикла кругового сканирования каждому узлу разрешается передать один кадр данных через сеть. Концентраторы, присоединенные как узлы к концентраторам верхних уровней иерархии, также выполняют свои циклы сканирования и передают запрос на передачу кадров концентратору. Концентратор нижнего уровня с N портами имеет право передать N кадров в течение одного цикла опроса.

    Каждый концентратор ведет отдельные очереди для низкоприоритетных и высокоприоритетных запросов. Низкоприоритетные запросы обслуживаются только до тех пор, пока не получен высокоприоритетный запрос. В этом случае текущая передача низкоприоритетного кадра завершается и обрабатывается высокоприоритетный запрос. Перед возвратом к обслуживанию низкоприоритетных кадров должны быть обслужены все высокоприоритетные запросы. Для того чтобы гарантировать доступ для низкоприоритетных запросов в периоды высокой интенсивности поступления высокоприоритетных запросов, вводится порог ожидания запроса. Если у какого-либо низкоприоритетного запроса время ожидания превышает этот порог, то ему присваивается высокий приоритет.

    На рисунке 11.2 показан пример цикла кругового опроса. Сначала предположим, что все порты передали запросы нормального приоритета, и что в начальный момент времени корневой концентратор начал круговой опрос. Порядок обслуживания портов будет следующим: 1-1 (уровень 1 - порт 1), 2 -1, 2-3, 2-N, 1-3, 1-N.

    Теперь предположим, что узлы 1-1, 2-3 и 1-3 выставили высокоприоритетные запросы. В этом случае порядок обслуживания будет таким: 1-1, 2-3, 1-3, 2-1, 2-N, 1-N.

    Уровень МАС получает кадр от уровня LLC и добавляет к нему адрес узла-источника, дополняет поле данных байтами-заполнителями до минимально допустимого размера, если это требуется, а затем вычисляет контрольную сумму и помещает ее в соответствующее поле. После этого кадр передается на физический уровень.
    1   2   3   4   5   6   7   8   9   ...   17


    написать администратору сайта