Главная страница
Навигация по странице:

  • 802.11

  • В первом варианте

  • Во втором варианте

  • Третий вариант

  • Консп. конспект_ лекций_СПД. Конспект лекций по курсу "Системы передачи данных" Для студентов, обучающихся по направлению


    Скачать 4.08 Mb.
    НазваниеКонспект лекций по курсу "Системы передачи данных" Для студентов, обучающихся по направлению
    АнкорКонсп
    Дата06.03.2023
    Размер4.08 Mb.
    Формат файлаdoc
    Имя файлаконспект_ лекций_СПД.doc
    ТипКонспект лекций
    #970719
    страница9 из 17
    1   ...   5   6   7   8   9   10   11   12   ...   17

    Технология уширения спектра


    В основе всех беспроводных протоколов семейства 802.11 лежит технология уширения спектра (Spread Spectrum, SS). Данная технология подразумевает, что первоначально узкополосный (в смысле ширины спектра) полезный информационный сигнал при передаче преобразуется таким образом, что его спектр оказывается значительно шире спектра первоначального сигнала. То есть спектр сигнала как бы «размазывается» по частотному диапазону. Одновременно с уширением спектра сигнала происходит и перераспределение спектральной энергетической плотности сигнала — энергия сигнала также «размазывается» по спектру. В результате максимальная мощность преобразованного сигнала оказывается значительно ниже мощности исходного сигнала. При этом уровень полезного информационного сигнала может в буквальном смысле сравниваться с уровнем естественного шума. В результате сигнал становится в каком то смысле «невидимым» — он просто теряется на уровне естественного шума.

    Собственно, именно в изменении спектральной энергетической плотности сигнала и заключается идея уширения спектра. Дело в том, что если подходить к проблеме передачи данных традиционным способом, то есть так, как это делается в радиоэфире, где каждой радиостанции отводится свой диапазон вещания, то мы неизбежно столкнемся с проблемой, что в ограниченном радиодиапазоне, предназначенном для совместного использования, невозможно «уместить» всех желающих. Поэтому необходимо найти такой способ передачи информации, при котором пользователи могли бы сосуществовать в одном частотном диапазоне и при этом не мешать друг другу. Именно эту задачу и решает технология уширения спектра.

    В 1997 году комитетом 802.11 был принят стандарт, который определял функции уровня MAC вместе с тремя вариантами физического уровня, которые обеспечивают передачу данных со скоростями 1 и 2 Мбит/с.

    В первом варианте средой являются инфракрасные волныдиапазона 850 нм, которые генерируются либо полупроводниковым лазерным диодом, либо светодиодом (LED). Так как инфракрасные волны не проникают через стены, область покрытия LAN ограничивается зоной прямой видимости.

    Во втором варианте в качестве передающей среды используется микроволновый диапазон2,4 ГГц, который в соответствии с рекомендациями ITU в большинстве стран не лицензируется. Этот вариант основан на методе FHSS. В методе FHSS каждый узкий канал имеет ширину 1 МГц. Частотная манипуляция (FSK) с двумя состояниями сигнала (частотами) дает скорость 1 Мбит/с, с четырьмя состояниями — 2 Мбит/с. Количество каналов и частота переключения между каналами настраиваются, так что при развертывании беспроводной локальной сети можно учитывать особенности регулирования спектра частот конкретной страны.

    Идею метода расширения спектра скачкообразной перестройкой частоты (Frequency Hopping Spread Spectrum, FHSS) иллюстрирует рис. 14.2.

    В течение определенного фиксированного интервала времени передача ведется на неизменной несущей частоте. На каждой несущей частоте для передачи дискретной информации применяются стандартные методы модуляции, такие как FSK или PSK. Для того чтобы приемник синхронизировался с передатчиком, для обозначения начала каждого периода передачи в течение некоторого времени передаются синхробиты. Так что полезная скорость этого метода кодирования оказывается меньше из-за постоянных накладных расходов на синхронизацию. Несущая частота меняется в соответствии с номерами частотных подканалов, вырабатываемых алгоритмом псевдослучайных чисел. Псевдослучайная последовательность зависит от некоторого параметра, который называют начальным числом. Если приемнику и передатчику известны алгоритм и значение начального числа, то они меняют частоты в одинаковой последовательности, называемой последовательностью псевдослучайной перестройки частоты.



    Рисунок 14.2. Расширение спектра скачкообразной перестройкой частоты
    Если частота смены подканалов ниже, чем скорость передачи данных в канале, то такой режим называют медленным расширением спектра (рис. 14.3, а); в противном случае мы имеем дело с быстрым расширением спектра (рис. 14.3, б).




    Рисунок 14.3 Соотношение между скоростью передачи данных и частотой смены подканалов:

    а — скорость передачи данных выше чиповой скорости,

    б — скорость передачи данных ниже чиповой скорости.
    Третий вариант, в котором используется тот же микроволновый диапазон,основан на методе DSSS, где в качестве последовательности чипов применяется 11-битный код 10110111000. Каждый бит кодируется путем двоичной фазовой (1 Мбит/с) или квадратурной фазовой (2 Мбит/с) манипуляции.

    В методе прямого последовательного расширения спектра (Direct Sequence Spread Spectrum, DSSS) также используется весь частотный диапазон, выделенный для одной беспроводной линии связи. В отличие от метода FHSS весь частотный диапазон занимается не за счет постоянных переключений с частоты на частоту, а за счет того, что каждый бит информации заменяется N битами, так что тактовая скорость передачи сигналов увеличивается в N раз. А это, в свою очередь, означает, что спектр сигнала также расширяется в N раз. Достаточно соответствующим образом выбрать скорость передачи данных и значение N, чтобы спектр сигнала заполнил весь диапазон.

    Цель кодирования методом DSSS та же, что методом FHSS — повышение устойчивости к помехам. Узкополосная помеха будет искажать только определенные частоты спектра сигнала, так что приемник с большой степенью вероятности сможет правильно распознать передаваемую информацию.

    Код, которым заменяется двоичная единица исходной информации, называется расширяющей последовательностью, а каждый бит такой последовательности — чипом. Соответственно, скорость передачи результирующего кода называют чиповой скоростью. Двоичный нуль, кодируется инверсным значением расширяющей последовательности. Приемники должны знать расширяющую последовательность, которую использует передатчик, чтобы понять передаваемую информацию.

    Примером значения расширяющей последовательности является последовательность Баркера (Barker), которая состоит из 11 бит: 10110111000 (рис.14.4). Если передатчик использует эту последовательность, то передача трех битов 110 ведет к передаче следующих битов:

    10110111000 10110111000 01001000111.

    Последовательность Баркера позволяет приемнику быстро синхронизироваться с передатчиком, то есть надежно выявлять начало последовательности. Приемник определяет такое событие, поочередно сравнивая получаемые биты с образцом последовательности. Действительно, если сравнить последовательность Баркера с такой же последовательностью, но сдвинутой на один бит влево или вправо, то мы получим меньше половины совпадений значений битов. Значит, даже при искажении нескольких битов с большой долей вероятности приемник правильно определит начало последовательности, а значит, сможет правильно интерпретировать получаемую информацию.

    Метод DSSS в меньшей степени защищен от помех, чем метод быстрого расширения спектра, так как, мощная узкополосная помеха влияет на часть спектра, а значит, и на результат распознавания единиц или нулей.



    Рисунок 14.4. Метод прямого последовательного расширения спектра .
    1   ...   5   6   7   8   9   10   11   12   ...   17


    написать администратору сайта