КОНСПЕКТ ЛЕКЦИЙ Электротехника и электроника. Конспект лекций
Скачать 252.3 Kb.
|
Основные законы цепей постоянного токаРасчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи. Закон Ома для участка цепиСоотношение между током I, напряжением UR и сопротивлением R участка аb электрической цепи (рис. 1.3) выражается законом Ома Рис.1 или UR = RI. В этом случае UR = RI – называют напряжением или падением напряжения на резисторе R, а – током в резисторе R. При расчете электрических цепей иногда удобнее пользоваться не сопротивлением R, а величиной обратной сопротивлению, т.е. электрической проводимостью: . В этом случае закон Ома для участка цепи запишется в виде: I = Uq. Закон Ома для всей цепиЭтот закон определяет зависимость между ЭДС Е источника питания с внутренним сопротивлением r0 (рис.1), током I электрической цепи и общим эквивалентным сопротивлением RЭ = r0 + R всей цепи: . Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии. Первый закон КирхгофаВ любом узле электрической цепи алгебраическая сумма токов равна нулю , где m – число ветвей подключенных к узлу. При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1) I - I1 - I2 = 0. Второй закон КирхгофаВ любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках , где n – число источников ЭДС в контуре; m – число элементов с сопротивлением Rк в контуре; Uк = RкIк – напряжение или падение напряжения на к-м элементе контура. Для схемы (рис. 1) запишем уравнение по второму закону Кирхгофа: E = UR + U1. Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контура, включая источники ЭДС равна нулю . При записи уравнений по второму закону Кирхгофа необходимо: 1) задать условные положительные направления ЭДС, токов и напряжений; 2) выбрать направление обхода контура, для которого записывается уравнение; 3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны. Рис.2 Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. 2): контур I: E = RI + R1I1 + r0I, контур II: R1I1 + R2I2 = 0, контур III: E = RI + R2I2 + r0I. В действующей цепи электрическая энергия источника питания преобразуется в другие виды энергии. На участке цепи с сопротивлением R в течение времени t при токе I расходуется электрическая энергия W = I2Rt. Скорость преобразования электрической энергии в другие виды представляет электрическую мощность . Из закона сохранения энергии следует, что мощность источников питания в любой момент времени равна сумме мощностей, расходуемой на всех участках цепи. . Это соотношение (1.8) называют уравнением баланса мощностей. При составлении уравнения баланса мощностей следует учесть, что если действительные направления ЭДС и тока источника совпадают, то источник ЭДС работает в режиме источника питания, и произведение E I подставляют в (1.8) со знаком плюс. Если не совпадают, то источник ЭДС работает в режиме потребителя электрической энергии, и произведение E I подставляют в (1.8) со знаком минус. Для цепи, показанной на рис. 1.2 уравнение баланса мощностей запишется в виде: EI = I2(r0 + R) + I12R1 + I22R2. Схемы соединения приёмников электрической цепи. Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рис. 1.3, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа. |