Главная страница
Навигация по странице:

  • Тактико-технические требования.

  • Конструктивно-технологические требования.

  • Эксплуатационные требования.

  • Требования по надежности.

  • Вероятность безотказной работы

  • Наработкой на отказ

  • Долговечностью прибора

  • Сохраняемость аппаратуры

  • Экономические требования.

  • Copyright ©2006 Davydov А. V .

  • Конструирование


    Скачать 259 Kb.
    НазваниеКонструирование
    Дата29.10.2022
    Размер259 Kb.
    Формат файлаdoc
    Имя файлаlec04 (1).doc
    ТипДокументы
    #760457
    страница3 из 3
    1   2   3

    4.3. Требования, предъявляемые к конструкции аппаратуры


    Вновь разрабатываемая РЭА должна отвечать тактико-тех­ническим, конструктивно-технологическим, эксплуатационным, надежностным и экономическим требованиям. Все эти требо­вания взаимосвязаны, и оптимальное их удовлетворение пред­ставляет собой сложную инженерную задачу.

    Тактико-технические требования.Эти требования обычно содержатся в техническом задании на аппаратуру и включают в себя такие характеристики, как вид измеряемой физической величины, диапазон измерений, точность измерений, быстродействие, объем памяти для регистрации данных, точность выполнения вычислительных операций и т. д.

    В основном данные требования удовлетворяются на ранних этапах разработки аппаратуры, когда определяются состав изделия, его структура, математическое обеспечение, основные требования к отдельным устройствам.

    Конструктивно-технологические требования.К этим требо­ваниям относят: обеспечение функционально-узлового принципа построения конструкции РЭА, технологичность, минимальную номенклатуру комплектующих изделий, минимальные габариты и массу, меры защиты от воздействия клима­тических и механических факторов, ремонтоспособность.

    Функционально-узловой принцип конструирования заключается в разбиении принципиальной схемы изделия на такие функционально законченные узлы, ко­торые могут быть выполнены в виде идентичных конструк­тивно-технологических единиц. Применение этого принципа конструирования позволяет автоматизировать процессы изго­товления и контроля конструктивных единиц, упростить их сборку, наладку и ремонт.

    Технологичность конструкции в сущест­венной степени определяется рациональным выбором ее струк­туры, которая должна быть разработана с учетом автономного, раздельного изготовления и наладки основных элементов, узлов, блоков. Конструкция РЭА тем более технологична, чем меньше доводочных и регулировочных операций приходится выполнять после окончательной сборки изделий.

    Понятие технологичности тесно связано с понятием эко­номичности воспроизведения в условиях производства. Наибо­лее технологичные конструкции, как правило, и наиболее экономичны не только с точки зрения затрат материальных ресурсов и рабочей силы, но и с точки зрения сокращения сроков освоения в производстве. Для них обычно характерны взаимозаменяемость, регулируемость, контролепригодность, инструментальная доступность элементов и узлов.

    В технологичной конструкции должны максимально ис­пользоваться унифицированные, нормализованные и стандарт­ные детали и материалы. Аппаратура считается также более технологичной, если в ней предусматривается минимальная номенклатура комплектующих изделий, материа­лов, полуфабрикатов.

    Необходимость разработки для изделий новых материалов с улучшенными свойствами или новых техноло­гических процессов определяется технико-экономическим эффек­том их использования в данной аппаратуре.

    Конструкция РЭА, и ГИП в особенности с учетом условий ее эксплуатации, должна иметь минимальные габариты и массу, что особенно важно для бортовой аппаратуры, где ее объем и масса ограничиваются размерами и мощностью летательного аппарата, и для переносных (носимых) приборов, предназначенных для производства измерений в полевых условиях, в шахтах и горных выработках.

    В конструкции аппаратуры необходимо предусматри­вать меры защиты от воздействия климатических и механи­ческих факторов, состав и значение которых определяются объектом, где будет эксплуатироваться разрабатываемая РЭА.

    К числу важных характеристик конструкции РЭА следует также отнести ремонтоспособность - качество конструкции к восстановлению работоспособности и поддержанию заданной долговечности. Для повышения ремонтоспособности в конструкции предусматривают:

    а) доступность ко всем конструктивным эле­ментам для осмотра и замены без предварительного удаления других элементов;

    б) наличие контрольных точек для под­соединения измерительной аппаратуры при настройке и контроле за работой аппаратуры;

    в) применение быстросъемных фиксаторов и т. д.

    Конструкция аппаратуры тем ремонтоспособнее, чем мень­шую конструктивную единицу она позволяет оперативно за­менять.

    Эксплуатационные требования.К эксплуатационным требо­ваниям относят: простоту управления и обслуживания, различные меры сигнализации опасных режимов работы (выход из строя, обрыв заземления и т. д.), наличие аппаратуры, обеспечивающей профилактический контроль и наладку кон­структивных элементов (стенды, имитаторы сигналов и т. д.). В последнее время развивается направление построения систем высокой надежности и живучести, имеющих в своем составе средства самодиагностики и автореконфигурации системы.

    С эксплуатационными требованиями тесно связаны требования обеспечения нормальной работы оператора. Важна также такая организация органов управления РЭА, которая бы отвечала современным эргономическим требованиям и требо­ваниям инженерной психологии.

    Требования по надежности.Данные требования включают в себя обеспечение:

    1) вероятности безотказной работы,

    2) наработки на отказ,

    3) среднего времени восстановления работоспособности,

    4) долговечности,

    5) сохраняемости.

    Вероятность безотказной работы есть вероятность того, что в заданном интервале времени при заданных режимах и условиях работы в аппаратуре не произойдет ни одного отказа.

    Наработкой на отказ называют среднюю продолжительность работы аппаратуры между от­казами.

    Среднее время восстановления работоспособности определяет среднее время на обнаружение и устранение одного отказа. Эта характеристика надежности является также важным эксплуатационным параметром.

    Долговечностью прибора называют продолжительность его работы до полного износа с необхо­димыми перерывами для технического обслуживания и ремонта. Под полным износом при этом понимают состояние аппаратуры, не позволяющее ее дальнейшую эксплуатацию.

    Сохраняемость аппаратуры - способность сохранять все технические характерис­тики после заданного срока хранения и транспортирования в определенных условиях.

    Экономические требования.К экономическим требованиям относят:

    1) минимально возможные затраты времени, труда и материальных средств на разработку, изготовление и эксплуа­тацию изделия;

    2) минимальную стоимость аппаратуры после освоения в производстве.

    Тесная связь предъявляемых к аппаратуре требований приводит к тому, что стремление максимально удовлет­ворить одному из них ведет к необходимости снизить зна­чение других. Так, желание увеличить надежность вве­дением структурной избыточности неизбежно влечет за собой увеличение габаритов, массы, мощности потребления, стои­мости. В данном случае выходом служит дальнейшее повышение степени интеграции микросхем.

    Соотношение между различными требо­ваниями может быть установлено исходя из типа, назначения и характера эксплуатации проектируемых изделий.

    Для больших универсальных ГИВС наиболее важное тре­бование — обеспечение максимального быстродействия, посколь­ку оно в существенной степени определяет их производи­тельность. Наименее важное требование - обеспечение неболь­ших габаритов и массы.

    Для универсальных встраиваемых приборов наиболее важные требования - высокая надежность и малая стоимость в серийном про­изводстве.

    Приборы для массового потреб­ления должны, прежде всего, иметь малую стоимость. Дости­жение высокого быстродействия для этого класса приборов - желательное, но не обязательное требование. Обычно стремятся достичь относительного высокого быстродействия, доступного в определенной ценовой категории.

    Бортовые изделия должны обладать высокой степенью надежности. При этом стоимость приборов в некоторых случаях не имеет существенного значения.

    Применение РЭА в комплексах геофизической техники накладывает на их конструкцию дополнительные жесткие требования. Это связано с тем, что при комплексном использовании успех выполняемой технологической операции в целом, например, каротажа скважины, может зависеть от правильной и безот­казной работы даже одного прибора.

    О ремонте какого-либо прибора в составе ГИВС в процессе эксплуатации не может быть и речи. Здесь должна быть обеспечена воз­можность быстрой замены вышедших из строя блоков запас­ными. Поэтому основным требованием к приборам, установленным в ГИВС, является надежность. Не менее важные требования - способность работать практически во всех извест­ных условиях эксплуатации, ремонтоспособность, малые габа­риты, масса, мощность потребления.

    4.4. Показатели качества конструкции аппаратуры [1, 2]


    Большое разнообразие РЭА требует от разработчиков знания наборов показателей, по которым можно сравнивать существующие модели РЭА. Важнейшую роль при этом будут играть эксплуатаци­онные и экономические показатели. С ними непосредственно связаны пара­метры, характеризующие РЭА как объект конструкторско-технологической разработки. К таким показателям следует в первую очередь отнести сле­дующие:

    Сложность конструкции ЭА:

    C = K1(K2N + K3M), (4.4.1)

    где N - число составляющих элементов, М - число соединений; Кi - масштабный и весовые коэффициенты соответственно.

    Выражение (4.4.1) связывает число составляющих РЭА интегральных микросхем, полупроводниковых приборов, электрорадиоэлементов, элемен­тов коммутации с числом разъемных и неразъемных соединений между ними, что определяет габариты, массу, надежность и другие общие параметры РЭА.

    Число элементов, образующих ЭА:

    N = nji, (4.4.2)

    где Ny - число устройств в РЭА, Кn - число типов применяемых элементов; nji - число элементов i - типа, входящих в j - устройство.

    Объем РЭА:

    V = VN + VC + VK + VУТ,

    где VN - общий объем интегральных микросхем и электрорадиоэлементов, образующих ПЭА, VC - объем, занимаемый всеми видами соединений, VK - объем несущей конструкции, обеспечивающей прочность и защиту ПЭА при транспортировании и эксплуатации, VУТ - объем теплоотводящего устройства.

    Коэффициент интеграции, или коэффициент использования физиче­ского объема

    qи = VN/V

    характеризует степень использования физического объема РЭА элементами, выполняющими полезную функциональную нагрузку, т. е. непосредственно определяющими электрическую схему РЭА (qи всегда меньше 1 и приближа­ется к ней с использованием больших интегральных схем).

    Общая масса РЭА, определяемая как сумма масс, входящих в состав РЭА устройств:

    m = mN + mC + mК +mУТ.

    Общая мощность потребления ЭА:

    P = pj,

    где pj - мощность потребления j - устройства. Для цифровых устройств потребляемая ими мощность зависит от средней мощности потребления электронных компонентов. Известно, что 80 — 90 % мощности потребления рассеивается в виде теплоты и определяет тепловой режим РЭА и соответст­вующие перегревы элементов конструкции.

    Общая площадь, занимаемая РЭА:

    S = sj,

    где sj - площадь, требуемая для эксплуатации j - устройства РЭА.

    Собственная частота колебаний конструкции (элемента, устройства или всей ЭА):

    fo = (1/2) ,

    где К - коэффициент жесткости конструкции, m - масса конструкции РЭА.

    Степень герметичности конструкции ЭА, определяемая количеством газа, истекшем из определенного объема конструкции за известный отрезок времени:

    D = VoP/сл.

    где Vo - объем герметизированной части РЭА, сл - срок службы РЭА, P - избыточное давление газа в конструкции РЭА.

    Вероятность безотказной работы РЭА p(t) и средняя наработка на отказ Тср - показатели надежности ЭА (будут рассмотрены далее).

    Степень унификации РЭА:

    Кун = Nун/N,

    где N - количество унифицированных элементов, a N - общее количе­ство примененных в РЭА элементов.

    Коэффициент автоматизации конструкторских работ:

    Ка = Ма/М,

    где Ма - количество конструкторских работ, выполненных с применением ЭВМ, М - общее число конструкторских работ при проектировании РЭА.

    Важнейшим параметром, определяющим большинство эксплуатаци­онных, конструкторских и экономических характеристик разрабатываемой РЭА, является технологичность, общее понятие о которой будет рассмотрено отдельно.
    Литература

    1. Ивченко В.Г. Конструирование и технология ЭВМ. Конспект лекций. - /Таганрог: ТГРУ, Кафедра конструирования электронных средств. – 2001. - http://www2.fep.tsure.ru/russian/kes/books/kitevm/lekpart1.doc

    2. Конструкторско-технологическое проектирование электронной аппаратуры: Учебник для вузов. – М.: Изд. МГТУ им. Н.Э. Баумана, 2002. – 528 с. URL: http://slil.ru/22574041/529407141/Konstruktorsko-tehnologicheskoe_proektirovanie_elektronnoj_apparatury.rar

    3. ГОСТ Р 15.201-2000. Система разработки и постановки продукции на производство. Продукция производственно-технического назначения. Порядок разработки и постановки продукции на производство.


    Главный сайт автора Лекции по конструированию аппаратуры

    О замеченных опечатках, ошибках и предложениях по дополнению: davpro@yandex.ru.

    Copyright ©2006 Davydov А.V.
    1   2   3


    написать администратору сайта